Copies available at a minimal cost from:

University of Washington School of Fisheries Fisheries Research Institute 354 Fisheries Center Attn: Marcus Duke University of Washington Seattle, WA 98195 (206) 543-4678 TOAN LOPY DELY

FRI-UW-8803 November 1988

WSE-MR 88-6 RIF-75

U.S. NAVY HOMEPORT DISPOSAL SITE INVESTIGATIONS IN PORT GARDNER, WASHINGTON, 1986 AND 1987

Bottomfish Assessments

by

CIRCULATING COPY Sea Grant Depository

Robert L. Lauth. Robert F. Donnelly, John H. Stadler, Shelley C. Clarke, Bruce S. Miller, Lori Christensen, Paul A. Dinnel and Karen Larsen

FINAL REPORT

to

Washington Sea Grant, U.S. Navy and U.S. Army Corps of Engineers

FRI-UW-8803 November 1988

FISHERIES RESEARCH INSTITUTE School of Fisheries University of Washington Seattle, WA 98195

U.S. NAVY HOMEPORT DISPOSAL SITE INVESTIGATIONS IN PORT GARDNER, WASHINGTON, 1986 AND 1987

Bottomfish Assessments

by

Robert L. Lauth, Robert F. Donnelly, John H. Stadler, Shelley C. Clarke, Bruce S. Miller, Lori Christensen, Paul A. Dinnel and Karen Larsen

FINAL REPORT

to

Washington Sea Grant, U.S. Navy and U.S. Army Corps of Engineers

2-17-88 Submitted

Approved Director

ABSTRACT

As part of the U.S. Navy Homeport Project, demersal fish populations were sampled on a quarterly basis in and around a proposed dredge disposal site (RADCAD) in Port Gardner during 1986 to 1987. Sampling was conducted at depths ranging from 20 m to 135 m using a 7.6-m otter trawl and a 3-m beam trawl.

Abundance, biomass, species, richness, and species diversity were highest at the 40- and 80-m depths. Observed seasonal differences in abundance and biomass were attributed to seasonal concentrations of Pacific hake and ratfish. Species diversity was found to be highest during Autumn quarter sampling. Flatfish were examined for the presence of liver tumors and infestations of the blood worm (*Philometra* sp.) and found to be in good health with low incidences of either condition.

The proposed disposal site (110 m to 120 m in depth) appeared typical of other locations within Puget Sound at similar depths, with lower abundance, biomass, species diversity, and species richness when compared to shallower depths within the study area. Twenty-five species of fish were captured at the RADCAD site, with five species predominating in the catches: ratfish, slender sole, Dover sole, English sole and Pacific hake.

TABLE OF CONTENTS

. .

	Page
LIST OF TABLES	iv
LIST OF FIGURES	vi
ACKNOWLEDGMENTS	viii
INTRODUCTION	. 1
MATERIALS AND METHODS	. 2
Description of the Study Area	. 4
Sampling Design	. 2
Fish Sampling	. 2
Environmental Sampling	. 3
Description of the Sampling Gear	3 3 3
Otter Trawl	
Beam Trawl	. 3
Secchi Disc	. 4
Niskin Bottle	. 4
Surface Bucket	. 4
Sample Preservation	. 4
Biological	. 4
Environmental	. 4
Sample Processing	. 4
Biological	. 4
Environmental	. 6
Data Analyses	. 6
Abundance and Biomass	. 6
Species Diversity	. 0
Species Richness	
Species Clusters	·
Species Composition	··
Length-frequency	
Station Clusters	. / 8
RESULTS.	
Abundance and Biomass	. 8
Species Diversity	
Species Richness	. ğ
Species Composition and Relative Abundance	
135M-depth Stratum	_
100M-depth Stratum	
80M-depth Stratum	
40M-depth Stratum	
20M-depth Stratum	11
Abundance and Length Frequency Analysis of Fishes Common to	
the RADCAD Stratum	11
Desifie Uska	. 11
Tralich Sole	12
Slender Sole	17
Dover Sole	13
Ratfish	13
NAUI3II	

Page

Station Clusters	14
Flatfish Health	14
Environmental Data	14
DISCUSSION	
Biological Considerations	14
RADCAD Focus	15
Exploited Fishes in Port Gardner	16
Flatfish Health	17
Gear Efficiency and Sampling Effort	17
Environmental Considerations	18
Recommendations	18
LITERATURE CITED	19
TABLES AND FIGURES	23
APPENDIX TABLES	71

· ----

LIST OF TABLES

.

.

Tabl	e		Page
1.	Sampling sched	lule for Port Gardner bottomfish	24
2.	Bottomfish spec	cies caught in the Port Gardner area using each gear type	25
3.		sition and relative abundance for the otter trawl of the most pecies by strata and season	27
4.		sition and relative abundance for the beam trawl of the most pecies by strata and season	30
5.	Species clusters	s of otter trawl-caught fish, all strata combined by season	33
6.	(Philometra sp.	ce and sample size (in parentheses) of the bloodworm) infection in flatfish shown by species, stratum and Gardner	35
7.	Measurements by depth strat	of temperature, salinity, dissolved oxygen and water clarity tum and season at Port Gardner	36
Арр	endix Table 1.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by otter trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Winter 1986	72
Арр	endix Table 2.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by otter trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Spring 1986	78
App	endix Table 3.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by otter trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Summer 1986	84
Арр	endix Table 4.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by otter trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Autumn 1986	90
App	endix Table 5.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by otter trawl from the RADCAD and 100M strata in Port Gardner during Winter 1987	96
App	endix Table 6.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by beam trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Winter 1986	97
Арр	endix Table 7.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by beam trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Spring 1986	103

Table		Page
Appendix Table 8.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by beam trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Summer 1986	109
Appendix Table 9.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by beam trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Autumn 1986	115
Appendix Table 10.	Total, average and standard deviation of abundance and biomass for bottomfish species caught by beam trawl from the RADCAD, 135M, 100M, 80M, 40M and 20M strata in Port Gardner during Winter 1987	121

• • • • • •

v

. . .

. .

LIST OF FIGURES

Fig.		Page
1.	Map of western Washington showing the location of Port Gardner	37
2.	Map of Port Gardner showing otter trawl stations and environmental sampling stations	38
3.	Diagrams of the otter trawl and beam trawl used in this study	39
4.	Catch-per-unit-effort abundance and catch-per-unit-effort biomass of otter trawl caught bottomfish by stratum and season	40
5.	Catch-per-unit-effort abundance and catch-per-unit-effort biomass of beam trawl caught bottomfish by stratum and season	41
6.	Species diversity of otter trawl catches by stratum and season	42
7.	Species diversity of beam trawl catches by stratum and season	43
8.	Species richness of otter trawl and beam trawl caught fish for all seasons combined by stratum.	44
9.	Species richness of combined otter trawl and beam trawl caught fish by season and stratum	45
10.	Catch-per-unit-effort abundance of Pacific hake by stratum and season	46
11.	Pacific hake length-frequency plots for all strata combined by season	47
12.	Pacific hake length-frequency plots for RADCAD stratum by season	48
13.	Pacific hake length-frequency plots for the 135m stratum by season	49
14.	Pacific hake length-frequency plots for the 100m stratum by season	50
15.	Pacific hake length-frequency plots for the 80m stratum by season	51
16.	Catch-per-unit-effort abundance of English sole by stratum and season	52
17.	English sole length-frequency plots of males, females and juveniles for all strata combined by season	53
18.	English sole length-frequency plots of males and females for the RADCAD stratum by season	54
19.	English sole length-frequency plots of males and females for the 135m stratum by season	55
20.	English sole length-frequency plots of males and females for the 100m stratum by season	56
21.	English sole length-frequency plots of males and females for the 80m stratum by season	57
22.	English sole length-frequency plots of males, females and juveniles for the 40m stratum by season	58
23.	Catch-per-unit-effort abundance of slender sole by stratum and season	59
	Slender sole length frequency plots of males, females and juveniles for all strata combined by season	60

Fig.		Page
25.	Slender sole length-frequency plots for all seasons combined by stratum	61
26.	Catch-per-unit-effort abundance of Dover sole by stratum and season	62
27.	Dover sole length-frequency plots for all strata combined by season	63
28.	Catch-per-unit-effort abundance of ratfish by stratum and season	64
29.	Ratfish length-frequency plots for males, females and juveniles for all strata combined by season	65
30.	Ratfish length-frequency plots for RADCAD by season	66
31.	Ratfish length-frequency plots for 135m stratum by season	67
32.	Ratfish length-frequency plots for 100m stratum by season	68
33.	Ratfish length-frequency plots for 80m stratum by season	69
34.	Dendrogram of Bray-Curtis distance measure between stations by season	70

.

ACKNOWLEDGMENTS

This project was funded by the Washington Sea Grant Program (Grant no. NA86AA-DSG044B) in cooperation with the Seattle District, U.S. Army Corps of Engineers and the U.S. Navy. Partial direct funding was also provided by a contract from the U.S. Navy (Contract no. N62474-87-R-D510). Valuable sponsor coordination of this project was provided by Louie Echois and Alan Krekel of Washington Sea Grant; John Malek, Tom Muller, Steve Martin and David Kendall of the Seattle District, U.S. Army Corps of Engineers; and Ed Lukjanowicz, J.E. Roth and Rick Krochalis of the U.S. Navy.

As part of a joint scientific project coordinated by Glen Jamieson and Dwight Heritage of the Pacific Biological Station, Nanaimo, B.C., the *Pisces IV* submersible, support vessel *Pender* and crews for both vessels were loaned to the project at no cost by the Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, British Columbia under the direction of Jonathan Davis. Frank Chambers, Chief Pilot for *Pisces IV* and his crew provided smooth diving operations with their professional and expert services. The crew of the U.S. Navy tug *Manhattan* provided valuable towing services for the *Pisces IV* and *Pender* to and from Port Gardner.

The trawling operations were conducted from the R/V *Kittiwake* under the capable guidance of Charles Eaton. Report preparation and editing was provided by Marcus Duke and Frederick Johnson.

INTRODUCTION

Construction of the U.S. Navy Homeport facility in Everett, Washington, will require the dumping of dredged materials at an aquatic dumpsite. To assess existing bottomfish populations, and to provide baseline data for post-disposal monitoring, a series of trawl surveys was conducted during 1986 and 1987 in and around the proposed RADCAD (Revised Application Deep Confined Aquatic Dumpsite) site in Port Gardner.

Fish are generally more mobile than benthic invertebrates and are presumably better equipped to escape the most direct effects of dumping (e.g., being buried). However, dredge disposal may be indirectly detrimental to fishes because certain species may utilize an area for feeding, spawning or as a nursery.

Since many bottomfish species feed on benthic invertebrates, the value of an area as a bottomfish feeding habitat can be determined by examining the benthos (Luntz and Kendall 1982). A change in the structure of the benthic community could have adverse effects on bottomfish populations. Numerous studies have documented changes in the benthic and bottomfish communities. Work in Upper Chesapeake Bay and in Long Island Sound has demonstrated that the benthic community may completely recover 18 months after dumping of dredge materials has ceased (Chesapeake Biological Laboratory 1970; Schubel et al 1979). Hughes et al. (1978) found that the dumping of dredged material in Elliott Bay, Puget Sound, had no lasting effects on the benthic community at the disposal site. However, a similar study has shown reductions in species diversity, density and biomass at disposal sites in Long Island Sound (Serafy et al. 1977). At a disposal site in Oregon, off the mouth of the Columbia River, the benthic community was more diverse, but with lower biomass, while the demersal fish species diversity, species richness and catch-per-unit-effort (CPUE) declined following the disposal of dredged materials. Such varying results suggest that factors such as depth and material type influence the rate at which benthic communities recover (Grassle 1977; Schubel et al. 1979; Desbruyeres et al. 1980).

Huet (1965) suggested that changes in benthic sediment composition may interfere with fish reproduction. Disposal of dredged material may also decrease the available shelter and result in increased inter- and intraspecific competition (Elner and Hamet 1984).

Fish health may be adversely affected by dumping of contaminated materials. Fin erosion disease and liver disease in flatfish have been associated with the presence of PCBs and chlorinated hydrocarbons in benthic sediments (Sherwood 1976, 1978; Pierce et al.1977; Cross 1982; Rosenthal et al.1984). Increases in suspended sediments due to dumping have also been shown to affect fish. For example, Johnson and Wildish (1981) found that herring will avoid dredge spoils.

In addition, suspended sediments that clog the gills of fish can cause asphyxiation (Sherk et al. 1974).

In order to minimize the impact of dredge disposal upon the bottomfish community, we need to know which fish species are present and in what numbers. Furthermore, we must understand the temporal and spatial patterns of use by these fish species and the motivations for their presence in the area.

The purpose of this study was to assess the bottomfish community at the proposed RADCAD site in terms of species diversity, species richness, abundance, biomass, patterns of utilization and, for flatifsh, their state of health.

MATERIALS AND METHODS

Description of the Study Area

The study was conducted within the confines of Port Gardner (Fig. 1). The bathymetry is typical of Puget Sound with steep side slopes and a gently sloping flat bottom. The Snohomish River enters at the northeast corner of Port Gardner and has created a delta with a steep embankment ranging in depth from from 0 m to 100 m. The generally flat bottom begins at about 100 m depth in the northeast and slopes downward to the southeast. The bottom is composed of sand and mud.

Sampling Design

The sampling design was a stratified regimen based on depth and season. Results of other studies in Puget Sound (Donnelly et al. 1984a; Wingert and Miller 1979) indicated that depth and season are important variables of the benthic fish assemblages and the sampling scheme should be stratified to obtain meaningful data on the fish community.

Fish Sampling

.

Eighteen stations were sampled during Winter and Spring of 1986 (Fig. 2 and Table 1). The RADCAD stratum was the proposed disposal at depths from 110 m to 120 m. Strata 135M and 100M were located on the flat bottom of Port Gardner at depths of 120-145 m and 90-110 m, respectively. Stratum 80M was located at 80 m on the river delta slope. Strata 40M and 20M were located at the 40-m and 20-m depth contours on the southeast side of Port Gardner. Station E was added during Summer 1986 sampling and stations G and H were added during Autumn 1986 sampling. During Winter of 1987, one additional day of sampling was conducted on six RADCAD stations and one 100M strata station.

Environmental Sampling

Subsurface (near bottom) and surface water temperature, salinity and dissolved oxygen samples were collected at the RADCAD, 135M, 40M and 20M strata during each biological sampling season (Fig. 2). In addition, light penetration measurements were taken at the same strata and seasons.

Description of the Sampling Gear

Two different trawls, an otter trawl and a beam trawl, were used to collect bottom fish. The number of stations sampled differed within each stratum for the otter trawl and beam trawl (Fig. 2 and Table 1). The beam trawl was used as the primary research tool in a separate and extensive study focusing on crab and shrimp resources in Port Gardner (Dinnel et al. 1988). The stations and strata sampled with the otter trawl (the primary fish capture tool) were a subset of the beam trawl stations and strata. However, significantly lower numbers of bottomfish were collected using the beam trawl, so the data from comparable strata were used to supplement the otter trawl results despite the difference in sampling gear. The number of stations sampled was 48 during Winter and Spring 1986; 53 during Summer 1986; 55 during Autumn 1986; and 21 during Winter 1987.

Otter Trawl

A 7.6-m otter trawl (Fig. 3) was used to capture bottomfish in Port Gardner. The otter trawl was a semi-balloon design with bridle, otter doors and net (Mearns and Allen 1978). The bridle was 22.7-m long and made of 1.5-cm braided nylon. The otter doors were 51 cm by 80 cm and weighed 23 kg. The body of the net was made of 3.5 cm stretch mesh covered with 2.5 cm stretch mesh to prevent chafing. The otter trawl was deployed from the 16-m research vessel Kittiwake. The effective fishing width of the net was 3.8 m (Donnelly et al. unpublished data). Each sample (or catch-per-unit-effort, CPUE) consisted of the otter trawl towed for a distance of 370 m at a target ground speed of 4.2 km per hour (1295 m²).

Beam Trawl

A 3-m plumb staff beam trawl was also used to sample bottom organisms (Gunderson and Ellis 1986). The beam trawl consisted of a 3-m bridle, a 3-m bar (or beam), two 9.5-kg tom weights, tickler chain and netting (Fig. 3). The body of the net was made of 20-mm stretch mesh and the cod end was 10-mm stretch mesh. A piece of heavy 80-mm stretch mesh was attached to the underside of the cod end to act as chafing gear. The effective fishing width of the beam trawl

was 2.3 m (Paul Dinnel, personal communication). The beam trawl was towed 232 m at a target ground speed of 2.5 km per hour (534 m²).

Secchi Disc

Light penetration was measured with a Secchi disc (30.5 cm diameter). The Secchi disc was lowered over the lee side of the *Kittiwake*, and the depth at which the instrument was no longer visible was recorded.

Niskin Bottle

A plastic Niskin bottle (51) was used to collect subsurface water for salinity, dissolved oxygen and temperature. Water samples were dispensed into standard salinity and dissolved oxygen bottles. Temperature was obtained with a hand-held thermometer as soon as the samples were brought on board the vessel.

Surface Bucket

A plastic bucket (10 l) was used to collect surface water. The salinity, dissolved oxygen and temperature samples were treated in the same way as the Niskin bottle samples.

Sample Preservation

Biological

All fish collected in the field were placed in plastic bags, put on ice and later transferred to a freezer for storage. Each bag was labeled inside and outside to ensure proper identification.

Environmental

Dissolved oxygen samples were fixed in the field using the techniques of Carpenter (1965) and stored on ice. Samples taken for salinity measurements were also stored on ice. Light penetration and temperature data were recorded in the field.

Sample Processing

Biological

Fish samples were removed from the freezer and allowed to thaw. Fish were separated by species and all flatfish, gadids (Pacific cod, Pacific tomcod, Pacific hake, and walleye pollock), surf perch (pile perch, shiner perch and striped seaperch) and ratfish were further separated by size (i.e., juvenile or adult). Flatfish and gadid species juveniles were defined as being less than or equal to 120 mm in length. Surf perch were considered juveniles if they were less than or equal to 100 mm in length. The tips of ratfish tails were often missing; therefore, a length from snout to the

end of the second dorsal fin, as well as total length (when possible), was recorded. Juvenile ratfish were defined as less than or equal to 150 mm to the end of the second dorsal fin. The length of each fish, the total number and weight for each species and juvenile or adult status for most fish were recorded. When a large number of individuals per species and/or life history stage were present in a sample, a subsample of at least 30 randomly selected individuals was measured and weighed.

Female English sole were examined in the field for sexual maturity to determine if Port Gardner was used as a spawning ground. Sexual maturity was defined as females with ripe and running eggs. Gross (macroscopic) examination for fin erosion, skin tumors, liver tumors and blood worms (*Philometra* sp.) was conducted on all flatfish species; no attempt was made to look for these same diseases and parasites on any other species of fish.

Flatfish were examined for fin erosion in the field. Fin erosion typically affects the anal and dorsal fins and varies in severity from minor defects to extensive destruction of the fins. The less severe cases exhibit partial loss, fusion, or destruction of the fin rays, typically accompanied by hemorrhages and granulated tissue on the surface of the fin. Along the free edge of the diseased fin there is usually a line of hyperpigmentation. In the most severe cases, parts of the fins exhibit complete loss of fin rays, and the remaining tissue becomes greatly scarred, retracted, flaccid and deformed (Wellings et al. 1976).

Flatfish were examined in the laboratory for the presence of skin tumors. Skin tumors, which occur in several species of flatfish (Southern California Coastal Water Resources Project (SCCWRP) 1973), are found as two main types: angioepithelial nodules (AEN) and epidermal papillomas (IEP) (Angell et al. 1975; McArn et al. 1968; Miller and Wellings 1971). Field and laboratory experiments have shown the tumor types to be different stages of the same disease (McArn et al. 1968). AEN tumors, located anywhere on the external surface of the fish, are 1 mm to 5 mm in diameter, hemispherical, pink to red, smooth-surfaced and sessile lesions (Miller et al. 1977) and are typically found on small (usually juvenile) flatfish. EP tumors were circular, 5 mm to 50 mm in diameter, brown to black, and with the outer surfaces similar to cauliflower in appearance.

A random subsample (about 20%) of all adult flatfish livers was examined macroscopically for liver tumors and other obvious abnormalities. Liver tumors are known to occur among several species of flatfish (Malins et al. 1982; Landolt et al. 1984). The liver is involved in a wide variety of physiological activities and, in fish, it has been shown to be sensitive to the effects of contaminants (Sinnhuber et al. 1977).

All flatfish were examined in the laboratory for bloodworm (*Philometra* sp.), a relatively common internal parasite of marine flatfish. The bloodworms are clearly visible and are typically

5

located in the subcutaneous areas near or at the base of the fins. Bloodworms can be large, up to 100-mm length by 2-mm diameter, and are bright red (Amish 1976). The external appearance of the parasite in the fish resembles a dull red blister, less than 10 mm long.

Environmental

Dissolved oxygen samples were processed by the School of Fisheries Water Quality Laboratory, University of Washington, by the methodology of Carpenter (1965). Salinity was determined by a Wheatstone bridge at the School of Oceanography, University of Washington.

Data Analyses

All the data were collected and recorded on forms following the National Ocean Data Center (NODC) format. Analyses were done using both a hand calculator and computer programs.

Abundance and Biomass

Abundance and biomass CPUE (defined as the catch per tow; see other trawls, description of the sampling gear) values were computed for each stratum, season and gear type. The results were presented graphically. Total and average abundance and biomass values and their standard deviations for each stratum and each fish species were tabulated by season.

Species Diversity

The species diversity index (H') combines the number of fish species and their relative abundances. This index can be useful when comparing assemblages from different habitats (Pielou 1975). Species diversity was calculated for each strata, season, and gear type. The formula used for species diversity, after Pielou (1978), was:

$$H' = \sum_{i=1}^{n} p_i \ln p_i$$

where p_i is the proportion of the community that belonged to the ith species and n is the number of species.

Species Richness

Species richness, defined as the total number of species caught, was calculated for each strata from the combined otter trawl and beam trawl data. Pielou (1975) discusses the use of community indices and considers species richness a useful tool in ecological studies of aquatic communities.

Species Clusters

A numerical classification (or cluster analysis) technique was used to identify species assemblages. Advantages of this technique include the ability to: (1) provide objective criteria that can be applied to a large data set to arrive at a summary; (2) base the analysis upon quantitative catch data; and (3) evaluate the results at different levels of statistical similarities. Data preparation involved creating a data matrix composed of catch data (numbers or weight) for a set of species among a set of strata within each season. The data were transformed (log₁₀ (observation +1)) to reduce and normalize the variability. After transformation, resemblance measures were computed between species which resulted in a matrix of resemblance values. A hierarchical clustering technique was used (Boesch 1977; Clifford and Stephenson 1975) to combine species based upon similarities (or dissimilarities) of their attributes in a stepwise fashion. The dissimilarities were computed using the Bray-Curtis distance measure (Beals 1984; Bray and Curtis 1957). A dissimilarity index of 0.75 was used as a cutoff for grouping species.

Species Composition

The dominant species caught in each strata and season were tabulated by relative abundance. The most abundant species were graphed and shown by strata (Kenkel and Orloci 1986).

Length-frequency

Length-frequency histograms were constructed for the five most abundant species found in the RADCAD strata (English sole, hake, slender sole, Dover sole and ratfish) using all fish captured. No attempt was made to standardize the histograms based on the number of trawls in each stratum. The results were displayed graphically in three forms: (1) all seasons and strata combined; (2) by season and strata; and (3) by sex and life history stage where possible (i.e., large enough sample size to result in a meaningful graph).

Determination of age at size and/or reproductive age at size was inferred from the literature as follows: English sole (Holland 1954; Angell 1972), Pacific hake (Pedersen 1985), Dover sole (Hagerman 1952). Slender sole and ratfish literature on age at size was not available.

Station Clusters

Cluster analysis was used to identify clusters of stations for two purposes: (1) to identify a possible reference (control) site or sites for future monitoring after dredge disposal begins, and (2) to verify the basis for the selection of strata. The technique was the same as that used for species clustering. Details on the technique are given earlier, substituting site for species.

7

RESULTS

Fifty-eight species of fish were caught during the course of this study (Table 2). Forty-four species were caught by the otter trawl and 49 by the beam trawl. Table 2 lists both common and scientific names for the fishes caught during this study, but for the sake of brevity, only common names of species will be used throughout the remainder of this report.

Abundance and Biomass

Otter trawi abundance CPUE ranged from 4 to 337 fish, while the beam trawl abundance CPUE ranged from 3 to 100 fish per trawl. Otter trawl biomass CPUE ranged from 0.12 kg to 35 kg, while beam trawl biomass CPUE ranged from 0.15 kg to 2 kg per trawl.

In general, the otter trawl abundance and biomass CPUE values showed consistent trends throughout the study period (Fig. 4). The 80M stratum consistently had the highest abundance and biomass CPUE values for all seasons and, along with the RADCAD and 135 strata, peaked during Winter 1986.

The beam trawl abundance and biomass CPUE values were usually highest during Winter and Spring (Fig. 5). The 40M stratum had the highest abundance and biomass CPUE values during all sampling periods except Summer. The RADCAD, 135M and 100M strata had low abundance CPUE values during all seasons but had intermediate biomass CPUE values for Winter and Spring.

Abundance and biomass CPUE values and their standard deviations for all species, strata, seasons and gear types are listed in Appendix Tables 1 through 10.

Species Diversity

Species diversity of fish caught by otter trawl varied by season and stratum (Fig. 6). In general, Winter and Summer species diversities fluctuated little between strata. During Spring, the 40M and 80M strata had high values relative to other strata. In contrast, the deep strata (RADCAD, 135M and 100M) had high values compared to the other strata during Autumn.

Beam trawl species diversities also varied by season and strata (Fig. 7). Winter, Spring and Summer species diversities generally decreased with depth. During Autumn, there was no apparent trend in species diversities.

Species Richness

For all seasons combined, species richness, within each stratum decreased with depth except for the 20M stratum (Fig. 8). The lowest species richness was found at 135M while the highest was at 40M. Species richness increased from Summer to Autumn for all strata (Fig. 9). The RADCAD and 135m strata yearly patterns were similar, while seasonal values for all other strata appeared to fluctuate considerably.

Species Composition and Relative Abundance

Tables 3 and 4 list the most common species caught (greater than or equal to 1% of abundance CPUE value or occurring at least three out of the four seasons) by otter trawl and beam trawl for each stratum during each sampling period. Species composition and relative abundance varied between strata, and between seasons within a stratum. Abundance and biomass CPUE values and their standard deviations for all species caught are listed in Appendix A. All samples were taken during the study period.

135M-depth Stratum

Otter trawl sampling of the 135M stratum yielded 20 species. Of these species, only 5 (English sole, ratfish, slender sole, Dover sole and Pacific hake) were collected throughout the year and dominated in relative abundance. In terms of relative abundances, the dominant species changed from season to season; however, the order of dominance was generally as follows: slender sole, ratfish, Dover sole, English sole and Pacific hake.

The beam trawl caught 22 species of which 2 (slender sole and ratfish) occurred throughout the year. Three other species (Dover sole, blackfin poacher and longnose skate) were found during three of four seasons. Slender sole were either first or second in relative abundance during each sampling period.

115M-depth Stratum RADCAD)

Twenty-five species of fish were caught by the otter trawl at the RADCAD stations. Of these, 4 species (ratfish, slender sole, Dover sole, and English sole) occurred during each sample period. In addition, Pacific hake were present during 4 out of 5 sample periods. The total abundance of these five species represented a high percentage of the catch. Ratfish had the highest relative abundance during four out of five seasons, followed by English sole, slender sole and Dover sole.

The beam trawl catches for all seasons contained 17 species of fish, only two of which were found throughout the study period (slender sole and ratfish). Ratfish had the highest relative abundance during Winter 1986 and Spring and Summer 1987 and equal to English and slender sole for the highest relative abundance during the Autumn sampling period. Slender sole dominated in relative abundance during Winter 1987.

100M-depth Stratum

Otter trawl sampling within the 100M stratum yielded 17 species. Of these 17 species, 6 (English sole, Dover sole, slender sole, Pacific hake, quillback rockfish and ratfish) were present throughout the sampling period. Ratfish and English sole dominated in relative abundance two out of four seasons; Dover sole and Pacific hake were next in relative abundance followed by slender sole and quillback rockfish.

Sampling with the beam trawl resulted in the capture of 20 species of fish. Four species (slender sole, Dover sole, rex sole and ratfish) were found during all sampling periods. Pacific hake, spinyhead sculpin, blackfin eelpout, blackbelly eelpout, plainfin midshipman and blackfin poacher were encountered three of four seasons. Ratfish were the highest in relative abundance during all sampling periods; slender sole were second in relative abundance for three of four seasons and Dover sole were third in relative abundance for the first three sampling periods.

80M-depth Stratum

Twenty-one species were captured by the otter trawl at the 80M stratum. Nine of the 21 species (English sole, slender sole, flathead sole, Dover sole, quillback rockfish, blackbelly eelpout, blacktip poacher, Pacific hake and ratfish) were present in all seasons. English sole had the highest relative abundance with ratfish, hake and slender sole usually dominating the remainder of the catch. Flathead sole ranked low in relative abundance and 80M was the only stratum where they were consistently found throughout the year.

The beam trawl collected 27 species of fish, and English sole, slender sole, rex sole, Pacific hake, ratfish, plainfin midshipman, slim sculpin, blacktip poacher and bluebarred prickleback were found throughout the year. Another 7 species were found three of four seasons (flathead sole, Dover sole, blackbelly eelpout, staghorn sculpin, northern ronquil, Pacific torncod and spinyhead sculpin). Slender sole and ratfish had the two highest relative abundance values for all seasons except during Spring, when ratfish and Dover sole dominated.

40M-depth Stratum

Thirty-one species were collected by the otter trawl at the 40M stratum. Five species (English sole, rock sole, Dover sole, speckled sanddab and quillback rockfish) were present in the catches throughout the sampling period. English sole had the highest relative abundance for all seasons except Summer, when Pacific cod were prevalent.

The beam trawl captured 30 species of fish throughout the year. Eleven species (English sole, slender sole, Dover sole, rex sole, quillback rockfish, blackbelly eelpout, plainfin midshipman, slim sculpin, pygmy poacher, snake prickleback and ratfish) were found during each season. An

additional five species occurred three of four seasons (speckled sanddab, rock sole, northern ronquil, Pacific tomcod and roughback sculpin). For each sampling period, species in highest relative abundance varied between shiner perch, English sole, blackbelly eelpout and slender sole for Winter, Spring, Summer and Autumn, respectively.

20M-depth Stratum

Eleven species were collected by the otter trawl in the 20M stratum. Speckled sanddab and rock sole were found during all sample periods and ranked highest in relative abundance during Winter and Spring; English sole (found during three seasons) and shiner perch (found during two seasons) had the highest relative abundances for Summer and Autumn.

Twenty-seven species were caught by beam trawl; eight were caught throughout the year (English sole, rock sole, slender sole, slim sculpin, Dover sole, snake prickleback, quillback rockfish and northern ronquil). Five other species (pygmy poacher, roughback sculpin, speckled sanddab, plainfin midshipman and C-O sole) were found three of four seasons. Species in highest relative abundance varied for each sampling period between rock sole, speckled sanddab, blackbelly eelpout and slender sole for Winter, Spring, Summer and Autumn, respectively.

Species Clusters

The results of the species cluster analysis for each season are shown in Table 5. There were four to five main groups for each season with the composition changing with each season. Five species (English sole, Pacific hake, Dover sole, slender sole and ratfish) tended to group together in the same or closely related groups throughout the study period. In addition to the main groups, subgroups ranging from 0 to 4 were found. The composition of the subgroups, like the main groups, changed from season to season.

Abundance and Length Frequency Analysis of Fishes Common to the RADCAD Stratum

Pacific Hake

Pacific hake were present only in the RADCAD, 135M, 100M and 80M strata (Fig. 10). The largest catches of hake occurred during Winter 1986; other sampling periods had relatively low numbers. During all sampling periods, the greatest abundance CPUE values for hake were at the 80M stratum.

Length-frequency plots of Pacific hake show the presence of a wide range of year classes within the study area (Fig. 11). The Winter 1986 samples contained fish from the year classes

11

1985 through 1981 and older. Fish from the 1981 and older year classes could not be distinguished from each other. Several year classes older than 1981 may have been represented by larger fish (greater than 379 mm).

Winter 1986 and Spring samples had a similar range of year classes, while there were fewer year classes during Summer. The 1986 year class (average 65 mm) first appeared in the Autumn samples along with fish from the earlier year classes. Samples from the Winter 1987 collections contained fish from the 1985 through 1982 and older year classes, but no fish from the 1986 year class. Winter 1986 and 1987 samples contained age distributions that were similar to each other, consisting of fish approximately 2 years and older.

Generally, the hake found in the RADCAD stratum were 2 years and older (Fig. 12). The majority of fish larger than 379 mm were collected during Winter 1986 and 1987 in the RADCAD site. The young-of-the-year hake occurred exclusively in the 135M stratum during Autumn (Fig. 13). Year class representations for the 100M stratum were similar to the RADCAD stratum for Winter 1986 and 1987 (Fig 14). The catches at the 80M stratum consisted primarily of the 1985 and 1984 year classes during all sampling periods (Fig. 15). Relatively few fish were taken from the 1983 year class, and no fish from the 1982 and older year classes.

English Sole

English sole were present in all strata during all sampling periods except the Spring samples at the 20M stratum (Fig. 17). The RADCAD, 135M and 20M strata had low abundance CPUE values for English sole compared to the 80M and 40M strata. The 80M stratum had the highest CPUE values for all seasons except Winter, when the 40M stratum CPUE values dominated. The RADCAD stratum had low numbers of English sole during all sampling periods.

Length-frequency plots of English sole indicate the presence of at least 7 year classes within the study area (1986-1980; Fig. 17). English sole from year classes prior to 1980 could not be distinguished from each other; however, English sole larger than 293 mm (males) and 363 mm (females) may represent older year classes. Only three year classes were present in the samples from Winter 1987. Size distributions for female English sole indicated a larger average size compared to male English sole for all seasons. No ripe females were captured.

Catches of English sole from the RADCAD stratum consisted primarily of fish 3 years and older (Fig. 18). The RADCAD stratum had an age distribution similar to the 135M stratum (Fig.-19).

The catch at the 100M stratum was composed predominately of older fish, although a few young fish were also taken (Fig. 20). Three-year-old fish dominated the catches of both sexes in

the 80M stratum for Winter, Summer and Autumn (Fig. 21). Age distributions in the 40M stratum were dominated by young male English sole in both Winter and Autumn samples (Fig. 22).

Slender Sole

Slender sole were generally found in all strata and had peak abundance CPUE at the 80M stratum during all sampling periods (Fig. 23). The remaining strata had relatively low abundance CPUEs for all seasons except Winter, when the RADCAD and 135M strata increased.

The peak of the length-frequency distributions occurred between 161 mm and 220 mm (Fig. 24). Slender sole less than 121 mm (juveniles) were caught less frequently than the adults. The juveniles occurred during the Winter and appeared to recruit into the adult population during the Summer and Autumn. Adult length-frequency distributions were similar throughout the study period and in the deeper strata (Fig. 25).

Dover Sole

Dover sole were generally found in low abundance compared with English sole and slender sole (Figs. 16, 23 and 26). The distribution of Dover sole was restricted to the 40M and deeper strata and did not show any consistent abundance CPUE patterns between strata or seasons.

Length-frequency histograms of both sexes combined are shown in Figure 27. Most of the individuals ranged in size from 191 mm to 390 mm. The Winter size distribution had two peaks at 195 mm and 265 mm. The size range for Summer was similar to Winter, but the peaks occurred at 265 mm and 315 mm. A small peak occurred during Autumn between 191 mm and 240 mm. With the exception of the small Dover sole (less than 115 mm) caught during the Spring and Summer, there did not appear to be any differences between the size ranges throughout the study period.

Ratfish

Ratfish occurred only in the 80M and deeper strata (Fig. 28), with catches peaking during Winter. The abundance CPUE peaked at the RADCAD stratum in Winter. During Spring, Summer and Autumn, peaks occurred at the 80M or 100M strata.

The length-frequency distributions of the adults were similar for the RADCAD, 135M and 100M strata during Winter 1986 and similar for the RADCAD and 100M strata during Winter 1987 (Figs. 30-32). Juvenile ratfish (less than 150 mm) occurred irregularly throughout the RADCAD, 135M, 100M and 80M strata (Figs. 30-33). A broad size range of juveniles was evident for the sample at the RADCAD and 135M strata during Winter 1986.

Station Clusters

Results of the station cluster analysis are summarized in Figure 34. The RADCAD stratum generally grouped with the other deep strata. The 80M stratum formed a distinct group throughout the year. In general, the 40M and 20M strata grouped together and either formed distinct sub-groups (Winter) or were intermingled.

Flatfish Health

English sole, slender sole, Dover sole, flathead sole, rex sole, rock sole and speckled sanddab all showed indications of blood worm infestations (Table 6). The incidence of *Philometra* sp. varied between species, seasons and strata, but did not show a discernable pattern. One skin turnor was noted on a slender sole caught in the 100M stratum. There was zero incidence of fin erosion. Gross examination of flatfish livers revealed three cases of liver tumors: two English sole from the 100M stratum during Spring and one starry flounder from the 20M stratum during Autumn.

Environmental Data

Water temperatures were generally higher at the surface than the bottom during Spring, Summer and Autumn; this situation was reversed during Winter (Table 7). In general, salinities were lower at the surface than the bottom, while dissolved oxygen values showed an opposite trend. Water clarity varied throughout the year, with the offshore stations generally showing greater clarity than inshore stations.

DISCUSSION

Biological Considerations

Results indicated that similarities existed between RADCAD and other strata within Port Gardner. Abundance, biomass, species richness and species diversity were usually much lower at the RADCAD, 135M, 100M and 20M strata compared to the 80M and 40M strata. Previous studies in Puget Sound have shown similar trends. Donnelly et al. (1984a and b), Donnelly et al. (1986) and Moulton et al. (1974) found species diversity and species richness to be greatest at intermediate (40 to 50 m) depths; abundance and biomass have also been shown to be higher at intermediate depths (Donnelly et al. 1984a and b; Donnelly et al. 1986). Differences in bottom topography between strata may account for some of the variability. The 80M, 40M and 20M strata occurred on a steep slope whereas the RADCAD, 135M and 100M strata occurred on the flat bottom. The 80M stratum stations were all located on the lower slope of the river delta and were in an area which was previously used as a dump site for dredged materials (Dave Jamison, personal communication). Such physical differences may influence the structure of a fish community (Becker 1984; SCCWRP 1973).

Temporal differences also occurred in measures of the fish community. Abundance and biomass were highest during Winter for otter trawl catches and highest during either Winter or Spring for beam trawl catches. The peak in abundance and biomass during Winter 1986 at RADCAD appeared to be due to high concentrations of Pacific hake and ratfish. Species richness at all strata increased from Summer to Autumn. Species diversity at the RADCAD, 135M and 100M strata was always highest during Autumn. The increase in species diversity at the deeper strata was due to an increased number of species captured during the Autumn without a corresponding increase in abundance or biomass. However, results of other studies (Donnelly et al. 1984a and b; Moulton et al. 1974; and Miller et al. 1976) do not show the same patterns, possibly because the present study was limited to a single year of sampling. Therefore, the trends in seasonal variability discussed above may not hold true from year to year.

RADCAD Focus

On the basis of previous studies (Donnelly et al. 1984a and b) the RADCAD site appeared to be typical of other locations at a depth of 100 m in Puget Sound. These same studies found abundance and biomass to be generally low at depths of 100 m or more. The species diversities found in the RADCAD site showed similar seasonal patterns and values to other studies at similar depths.

Most species were caught in low numbers and occurred sporadically. Some species (e.g., shiner perch, Winter 1986 at 80 m and Pacific cod, Summer at 40 m) showed a significant peak in abundance during one season, then occurred at very low abundances throughout the rest of the year. Pacific hake, English sole, slender sole, Dover sole and ratfish usually dominated at the RADCAD, 135M, 100M and 80M strata and were usually found together throughout the study period. The 40M and 20M strata displayed the greatest variability of species composition and relative abundance for all seasons.

Pacific hake appeared to migrate within the study area as they aged. Young-of-the-year fish were found at the deepest depths during Autumn and seemed to then migrate to shallower depths in Winter as 1-year-olds. These fish concentrated at 80 m, where they remained throughout the year. After reaching the age of 2 years, the hake began to move deeper and became dispersed over the deeper strata. During Winter, Pacific hake tended to migrate into the RADCAD stratum. Many of these fish were greater than 310 mm in length (the size of 50% maturity of females) and may have been passing from their prespawning staging area in Saratoga Passage through Port Gardner to

their spawning grounds in Port Susan (Pederson 1985). At all other times of the year, older Pacific hake were in low abundance.

English sole seemed to undergo migrations between different strata. Generally the younger fish were found in the shallow strata, while the older ones were found at greater depths. This suggests that English sole moved into deeper water as they aged. Ketchen (1956) and English (1976) indicated such movement was correlated with size and, further, Ketchen (1956) found a pronounced shift of abundance into shallow water during spring; however this latter phenomenon was not seen in Port Gardner. Also, English sole are known to undergo migrations between different areas (Ketchen 1950), but no evidence was found to indicate migration of this type in Port Gardner. The RADCAD site contained few English sole at anytime and those that were present were usually large, older individuals. In Puget Sound, English sole spawn from January through April (Smith 1936); therefore, the low abundance in Winter and the lack of ripe females suggests that the RADCAD site was not being used as a spawning area.

Slender sole abundance decreased during Spring and Summer and then increased in Autumn. Most captured individuals exceeded the size of 50 percent maturity (Hart 1973) and, since slender sole spawn during Spring (Smith 1936), the decrease in abundance in Port Gardner suggests an outmigration to spawning grounds located elsewhere. The length-frequency distributions indicated that larger fish were usually limited to the deeper strata.

Hagerman (1952) found that Dover sole underwent a spawning migration in Autumn into waters deeper than those found in Port Gardner. The abundance and length-frequency patterns of Dover sole at the RADCAD site suggest a resident population except for Autumn, when they seemed to leave the area, perhaps to spawn.

Ratfish abundance patterns in the study area suggest migratory behavior. Peak abundance depths varied with season. Since ratfish are known to eat a wide range of prey (Sathyanesan 1966), this variability may represent the utilization of alternate food resources during the different seasons. Quinn et al. (1980) found that young ratfish were located at depths deeper than older individuals, and the species was most abundant at 75 m. In contrast, large and small ratfish in Port Gardner were found together at all depths from 80 m and deeper, and were usually most abundant at the RADCAD and 135M strata.

Exploited Fishes in Port Gardner

Four of the five most common fish species found in Port Gardner are, at least to some degree, commercially exploited. Pacific hake are heavily exploited in the Saratoga Passage/Port Gardner/ Port Susan area (Pedersen 1985). Pedersen (1985) also indicated that in recent years Pacific hake have been marketed exclusively for human consumption. English sole are caught by commercial

and sport fisheries in Port Gardner and throughout Puget Sound. Pacific hake and English sole dominate the commercial catches in the Port Gardner area (Pattie 1986). Slender sole are not targeted by either the commercial or sport fishery; however, occasional individuals become large enough to be kept by the commercial fishery (Greg Bargman, personnel communication). Dover sole is a commercially exploited species, but generally occurs in low enough abundance in the Port Gardner area to be considered incidental in the commercial catches. Ratfish are not exploited, but do occur in fairly high abundance throughout the deeper parts of the study area and other parts of Puget Sound (Donnelly et al. 1984 a and b; Miller et al. 1977). While all bottomfish may not be exploited, it is important to bear in mind that they still play important roles in the overall ecology of the marine community.

Flatfish Health

Flatfish appeared to be in good health in Port Gardner, based upon macroscopic examination for bloodworms, fin erosion, skin tumors and liver tumors. Malins et al. (1982) also found a low incidence of liver disorders, based on microscopic examination of rock sole and English sole livers from Port Susan, which is adjacent to Port Gardner.

Gear Efficiency and Sampling Effort

Gear efficiency of the otter trawl and beam trawl was not assumed to be 100%, and it is unknown how the catches compare with actual abundance. Mesh size may select for fish that could not slip through the net. Towing speed could also affect the catch by selecting for fishes that swim slower than trawl velocity. Furthermore, avoidance of the trawl by some fishes may be due to certain behavior (e.g., burying). However, the use of two gear types with different selectivity probably provides a better indication of the species present.

Unlike the beam trawl, the otter trawl has a history of use in Puget Sound for fish capture. However, beam trawl data offer unique insights. The beam trawl caught slightly more species of fish than the otter trawl (49 vs 44), but the otter trawl caught a greater abundance and biomass of fish. A total of 58 species of fish were caught by both gear types. Historically 136 species have been identified in the Everett area (DeLacy et al. 1972). Many of the species known for Port Gardner are diadromous, pelagic and/or occur in shallow water areas not sampled during this study. Approximately twice as many beam trawl samples, compared to otter trawl samples, were collected. Clearly, as more samples were collected, the probability of capturing the less common species increased. Species richness comparisons between strata, containing different sample sizes, should be viewed with some caution. Regardless of large sample sizes, the RADCAD and 135M strata still had lower species richness values than the shallower portions of the study area.

Environmental Considerations

Dissolved oxygen, salinity and temperature were similar to values found elsewhere in Puget Sound (Donnelly et al. 1984b; Miller et al. 1976). Dissolved oxygen was always near saturation both at the surface and near the bottom. Surface salinity was generally lower during the Winter and Spring months, probably because of freshwater input from rain and snow melt. Surface temperature was under considerable atmospheric influence, and thus typically was colder at the surface during the Winter months. Water clarity was generally best at the offshore stations, probably because nutrient and silt input from the Snohomish River influenced primary production at the nearshore stations.

Recommendations

On the basis of this study, the 135M and 100M strata are recommended as reference sites for future monitoring during and after the disposal of dredge spoils. That the 135M stratum was a closer match to RADCAD was probably due to similar depths and their distance from the slope; but also including the 100M stratum as a reference station would help monitor the possible impact on the area adjacent to the RADCAD.

LITERATURE CITED

- Amish, R. 1976. Infestations of some Puget Sound demersal fishes by blood worm, *Philometra* americana. M.S. thesis, Univ. Washington, Seattle. 41 p.
- Angell, C. H. 1972. The epizootiology of a skin tumor of a central Puget Sound population of English sole (*Parophrys vetulus*, Girard) with a special reference to its early life history. M.S. thesis, Univ. Washington, Seattle. 100 p.
- Angell, C. L., B. S. Miller and S. R. Wellings. 1975. Epizootiology of tumors in a population of juvenile English sole (*Parophrys vetulus*) from Puget Sound, Washington. J. Fish. Res. Board. Can. 32:1723-1732.
- Beals, E. W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Pages 1-55 in A. Macfadyen and E. D. Ford (eds.), Advances in Ecological Research. Vol. 14.
- Becker, D. S. 1984. Resource partitioning by small-mouthed pleuronectids in Puget Sound, Washington. Ph.D. dissertation, Univ. Washington, Seattle. 139 p.
- Boesch, D. F. 1977. An application of numerical classification in ecological investigations of water pollution. Va. Inst. Mar. Sci., Spec. Sci. Rep. 77, 114 p. (Avail. U.S. Dept. Commer., Natl. Tech. Inf. Serv., Springfield, VA, as EPA-600/3-77-033.)
- Bray, J. R. and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325-349.
- Carpenter, J. H. 1965. Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10:141-143.
- Chesapeake Biological Laboratory. 1970. Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay. Nat. Res. Inst. Spec. Rep. 3, Univ. Maryland, Solomons. 66 p.
- Clifford, H. T. and W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press, Inc., New York. 229 p.
- Cross, J. N. 1982. Trends in fin erosion among fishes on the Palos Verdes shelf. Pages 99-110 in W. Bascom (ed.), Biennial report, 1981-1982. South. Calif. Coast. Water Res. Proj.
- DeLacy, A. C., B. S. Miller and S. F. Borton. 1972. Checklist of Puget Sound fishes. Washington Sea Grant 72-3. Seattle, Wa. 43 p.
- Desbruyeres, D., J. Y. Bervas, and A. Khripovnoff. 1980. Un cas de colonisation rapide d'un sediment profond. Oceonol. Acta 3:285-291.
- Dinnel, P.A., D.A. Armstrong, R.R. Lauth, T.C. Wainwright, J.L. Armstrong and K. Larsen. 1988. U.S. Navy homeport disposal site investigations in Port Gardner, Washington. Invertebrate resource assessments. Final report to Washington Sea Grant, U.S. Navy and the U.S. Army Corps of Engineers. Univ. Washington, Fish. Res. Inst. FRI-UW-8802. 144 p.
- Donnelly, R. F., B. S. Miller, R. R. Lauth and S. C. Clarke. 1986. Demersal fish studies. Part II in Puget Sound dredge disposal analysis (PSDDA) disposal site investigations: Phase 1 trawl studies in Saratoga Passage, Port Gardner, Elliott Bay and Commencement Bay, Washington. Final report to Washington Sea Grant in cooperation with Seattle District, U. S.

Army Corps of Engineers, Seattle Washington. Univ. Washington, Fish. Res. Inst. FRI-UW-8615. 201 p.

- Donnelly, R. F., B. S. Miller, R. R. Lauth and J. Shriner. 1984a. Fish ecology. Vol. VI, Section 7 in Q. J. Stober and K. K. Chew (eds.), Renton sewage treatment plant project: Seahurst baseline study. Final report to METRO. Univ. Washington, Fish. Res. Inst. FRI-UW-8413. 276 p.
- Donnelly, R., B. Miller and R. Lauth. 1984b. Fish ecology. Section 6 in Q. J. Stober and K. K. Chew (eds.), Renton sewage treatment plant project: Duwamish Head. Final report to METRO. Univ. Washington, Fish. Res. Inst. FRI-UW-8417. 370 p.
- Elner, R. W. and S. L. Hamet. 1984. The effects of ocean dumping of dredge spoils onto juvenile lobster habitat: A field evaluation. Can. Tech. Rep. Fish. Aquat. Sci. No. 1247. 15 p.
- Grassle, J. F. 1977. Slow recolonization of deep-sea sediment. Nature 265:618-619.
- Gunderson, D. R., and I. E. Ellis. 1986. Development of a plumb staff beam trawl for sampling demersal fauna. Fish. Res. 4:35-41.
- Hagerman, F. B. 1952. The biology of the Dover sole, *Microstomus pacificus* (Lockington). Calif. Dept Fish and Game, Bureau Mar. Fish., Fish Bull. No. 85. 48 p.
- Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Bd. Can. Bull. 180. Info. Canada, Ottawa K1A OS9. 740 p.
- Huet, M. 1965. Water quality criteria for fish life. Pages 160-167 in C. Tarzwell (ed.), Biological Problems in Water Pollution. U. S. Public Health Serv. Publ. 999-WP-25.
- Holland, G. A. 1954. A preliminary study of the populations of English sole (*Parophrys vetulus*, Girard) in Carr Inlet and other localities in Puget Sound. M.S. thesis, Univ. Washington, Seattle. 139 p.
- Hughes, J. R., W. E. Ames, and G. F. Slusser. 1978. Aquatic disposal field investigations, Duwamish waterway disposal site, Puget Sound, Washington, Appendix A: Effects of dredged material disposal on demersal fish and shellfish in Elliott Bay, Seattle, Washington. Army Eng. Waterways Exper. Station, Vicksburg, MS, Tech. Rept. D-77-24, 105 p.
- Johnson, D. W. and D. J. Wildish. 1981. Avoidance of dredge spoil by herring (Clupea harengus harengus). Bull. Environ. Contam. Toxicol. 26(3):307-314.
- Kenkel, N. C. and L. Orloci. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67(4):919-928.
- Ketchen, K. S. 1950. The migration of lemon soles in northern Hecate Strait. Fish. Res. Board Can. Pac. Progr. Rep. 85:75-79.
- Ketchen, K. S. 1956. Factors influencing the survival of the lemon sole (*Parophrys vetulus*) in Hecate Strait, British Columbia. J. Fish. Res. Bd. Can. 13(5):513-558.
- Landolt, M. L., D. B. Powell and R. M. Kocan. 1984. Fish health. Vol. VII, Sec. 8 in Q. J. Stober and K. K. Chew (eds.), Renton sewage treatment plant project: Seahurst baseline study. Final report to METRO. Univ. Washington, Fish. Res. Inst. FRI-UW-8413. 276 p.

- Luntz, J. D. and D. R. Kendall. 1982. Benthic resources assessment technique, a method for quantifying the effects of benthic community changes on fish resources. Conference Proceedings, Oceans 82:1021-1027.
- Malins, D. C., B. B. McCain, D. W. Brown, A. K. Sparks, H. O. Hodgins and S. L. Chan. 1982. Chemical contaminates and abnormalities in fish and invertebrates from Puget Sound. NOAA Tech. Memo, OMPA-19. 168 p.
- McArn, G. E., R. G. Chuinard, B. S. Miller, R. E. Brooks and S. R. Wellings. 1968. Pathology of skin tumors found on English sole and starry flounder of Puget Sound, Washington. J. Nat. Cancer Inst. 41:229-242.
- Mearns, A. J. and M. J. Allen. 1978. Use of small otter trawls in coastal biological surveys. Contribution No. 66, South. Calif. Coastal Water. Res. Project. EPA-600/3-78-083.
- Miller, B. S., B. B. McCain, R. C. Wingert, S. F. Borton and K. V. Pierce. 1976. Ecological and disease studies of demersal fishes near METRO operated sewage treatment plants on Puget Sound and the Duwamish River. Puget Sound Interim Studies Rep. Univ Washington, Fish. Res. Inst. FRI-UW-7608. 135 p.
- Miller, B. S., B. B. McCain, R. C. Wingert, S. F. Borton, K. V. Pierce and D. T. Griggs. 1977. Ecological and disease studies of demersal fishes in Puget Sound near METRO-operated sewage treatment plants and in the Duwamish River. Puget Sound Interim Studies Rep. Univ. Washington, Fish. Res. Inst. FRI-UW-7721. 164 p.
- Miller, B. S. and S. R. Wellings. 1971. Epizootiology of tumors on flathead sole (*Hippoglossoides elassodon*) in East Sound, Orcas Island, Washington. Trans. Am. Fish. Soc. 100:247-266.
- Moulton, L. L., B. S. Miller, and R. I. Matsuda. 1974. Ecological survey of demersal fishes at Metro's West Point and Alki Point outfalls, January through December, 1973. Washington Sea Grant, Univ. Washington, Seattle. WSG-TA 74-11. 39 p.
- Pattie, B. 1986. The 1984 Washington trawl landings by Pacific Marine Fisheries Commission and state bottomfish statistical areas. Wash. Dept. Fish. Prog. Rept. no. 246. 50 p.
- Pedersen, M. 1985. Puget Sound Pacific whiting, *Merluccius productus*, resource and industry: an overview. Mar. Fish. Rev. 47(2):35-38.
- Pielou, E. C. 1975. Ecological Diversity. Wiley Interscience Pub., New York. 165 p.
- Pielou, E. C. 1978. Population ecology and community ecology: principles and methods. Gordon and Breach Sci. Pub., New York. 424 p.
- Pierce, K. V., B. McCain and M. J. Sherwood. 1977. Histology of liver tissue from Dover sole. Pages 207-212 in Coastal water research project, annual report for the year ended 30 June 1977. South. Calif. Coast. Water Res. Proj.
- Quinn, T. P., B. S. Miller and R. C. Wingert. 1980. Depth distribution and seasonal and diel movements of ratfish, *Hydrolagus colliei*, in Puget Sound, Washington. Fish. Bull. 78(3):816-821.
- Rosenthal, K. D., D. A. Brown, J. N. Cross, E. M. Perkins and R. W. Gossett. 1984. Histological condition of fish livers. Pages 229-246 in W. Bascom (ed.), Biennial Report, 1983-1984. South. Calif. Coast. Water Res. Proj.

Sathyanesan, A. G. 1966. Egg laying of the chimaeroid fish Hydrolagus colliei. Copeia 1966(1):132-134.

- Schubel, J. R., W. M. Wise and J. Schoof. 1979. Questions about dredging and dredged material disposal in Long Island Sound. State Univ. New York at Stony Brook, Mar. Sci. Res. Center, Spec. Rep. 28, ref. 79-11. 136 p.
- Serafy, D. K., D. J. Hartzband and M. Bowen. 1977. Aquatic disposal field investigations, Eatons Neck disposal site, Long Island Sound; Appendix C: predisposal baseline conditions of benthic assemblages. Army Eng. Water. Exper. Stn. Vicksburg, MS, Tech. Rep. D-77-6.
- Sherk, J. A., J. M. O'Conner and D. A. Neumann. 1974. Effects of suspended and deposited sediments on estuarine organisms. Phase II: Final Report. No. 74-20. Univ. Maryland, Nat. Resour. Inst., Prince Fredrick. 259 p.
- Sherwood, M. 1976. Fin erosion disease induced in the laboratory. Pages 149-154 in Annual report for the year ended 30 June 1976. South. Calif. Coast. Water Res. Proj.
- Sherwood M. J. 1978. The fin erosion syndrome. Pages 203-222.in W. Bascom (ed.), Annual Report for the Year 1978. South. Calif. Coast. Water Res. Proj.
- Sinnhuber, R. O., J. D. Hendricks, J. H. Wales and G. B. Putnam. 1977. Neoplasms in rainbow trout, a sensitive animal model for environmental carcinogenesis. Ann. New York Acad. Sci. 298:389-408.
- Smith, R. T. 1936. Report on the Puget Sound otter trawl investigations. Wash. Dep. Fish. Biol. Rep. 36B: 1-61.
- Southern California Coastal Water Research Project (SCCWRP). 1973. Coastal fish populations. In: The ecology of the Southern California Bight: implications for water quality management. 505 p.
- Wellings, S. R., C. E. Alpers, B. B. McCain and B. S. Miller. 1976. Fin erosion disease of starry flounder (*Platichthys stellatus*) and English sole (*Parophrys vetulus*) in the estuary of the Duwamish River, Seattle, Washington. J. Fish. Res. Board Can. 33:2577-2586.
- Wingert, R. C. and B. S. Miller. 1979. Distributional analysis of nearshore and demersal fish species groups and nearshore fish habitat associations in Puget Sound. Final report to Washington State Dept. of Ecology. Univ. Washington, Fish. Res. Inst. FRI-UW-7901. 110 p.

TABLES AND FIGURES

-

,

Season	Strata	Number of Otter Trawls	Number of Beam Trawls
Winter 1986 (February 11 - 14)	RADCAD 135M 100M 80M 40M 20M	3 4 2 3 3 3	3 9 10 12 7 7
Spring 1986 (April 14 - 21)	FADCAD 135M 100M 80M 40M 20M	3 4 2 3 3 3	3 9 10 12 7 7
Summer 1986 (June 24 - July 2)	RADCAD 135M 100M 80M 40M 20M	4 2 3 3 3	4 10 13 12 7 7 7
Autumn 1986 (September 8 - 15)	RADCAD 135M 100M 80M 40M 20M	4 6 2 3 3 3	6 10 14 11 7 7
Winter 1987 (December 10 -12 January 15)	RADCAD 100M	6 1	7 14

Table 1. Sampling schedule for Port Gardner bottom fish.

 Table 2.
 Bottomfish species caught in the Port Gardner area using each gear type. Species are grouped by families and are listed in alphabetical order by their scientific name within families. A=adult, J=juvenile.

Scientific Name	Common Name	<u>Otter Trawl</u>	<u>Beam Trawl</u>
FAMILY PETROMYZONTIDAE	Lampreys		
Lampetra tridentatus	Pacific lamprey	X	
FAMILY SQUALIDAE	Doglish Sharks		
Squalus acanthias	spiny dogfish	X	X
FAMILY RAJIDAE	Skates		
Raja rhina	iongnose skate	X	X
FAMILY CHIMAERIDAE	Chimeras		
Hydrolagus colliei	ratfish (A,J)	X	X
FAMILY CLUPEIDAE	Herrings		
Alosa sapidissima	American shad	X	
Ciupea harengua pailasi	Pacific herring	X	
FAMILY OSMERIDAE	Smelts		
Spirinchus theleichthys	longfin smelt (A)		x
FAMILY BATRACHOIDIDAE	Toadiishes		
Porichthys notatus	plainfin midshipman	х	x
	Codishes		~
Gadus macrocephalus	Pacific cod (A)	х	x
Microgadus proximus	Pacific tomcod (A,J)	x	â
Theragra chalcogramma	walleye pollock (A)	Ŷ	~
FAMILY MERLUCCIIDAE	Hakes	^	
Merluccius productus	Pacific hake (A,J)	×	x
FAMILY OPHIDIIDAE	Brotulas	^	~
	red brotula	u	
Brosmophycis merginate		×	X
FAMILY ZOARCIDAE	Eelpoute		
Lycodepus mendibuleris	pailld eelpout	X	•
Lycodes diapterus	black eelpout	X	X
Lycodopsis pacifica	blackbelly eelpout	X	X
FAMILY AULORHYNCHIDAE	Tubeanouts		
Aulorhynchus flavidus	tube-snout		X
FAMILY SYNGNATHIDAE	Pipefishes		•-
Syngnathus griseolineatus	bay pipefish		X
FAMILY EMBIOTOCIDAE	Surfperches		
Rhaccochilus vacce	pile perch (A,J)	X	X
Cymatogaster aggregata	shiner perch (A,J)	X	X
FAMILY BATHYMASTERIDAE	Ronquils		
Ronquilus jordani	northern ronguil	· X	X
FAMILY STICHAEIDAE	Pricklebacks		
Anoplarchus insignis	slandar cockscomb		X
Lumpenus maculatus	daubed shanny		X
Lumpenus sagitta	snake prickleback	X	X
Plectobranchus evides	bluebarred prickleback		X
FAMILY PHOLIDAE	Gunnels		
Phoils lasta	crescent gunnel		X
Phole ornete	saddleback gunnel		X
FAMILY SCORPAENIDAE	Rockfishes		
Sobastes maliger	quiliback rockfish	x	x
FAMILY ANOPLOPOMATIDAE	Sablefishes		.,
Anopiopôma fimbria	sablefish (A)	X	x
FAMILY COTTIDAE	Sculpins		
Chitonotus pugetensis	roughback sculpin	x	x
Cottid ap.	UID sculpin	x	x
Dasycottus setiger	spinyheed sculpin	Ŷ	Ŷ
Enophyrs bison	butfalo sculpin	^	X X
	+	~	÷.
Glibertidia sigalutes	soft sculpin	. X	Š
icelinus borealis	northern sculpin	x	×××
Leptocottus armetus	Pacific staghorn sculpin	×	X
	great sculpin		X
Myoxocephalus polyacanthocephalus	HA		
Nautichthys oculfasciatus	sailfin sculpin	X	
	saiifin sculpin slim sculpin grunt sculpin	X X	×

Table 2. contd.

.

Scientific Name	Common Name	Otter Trawl	Beam Trawl
FAMILY AGONIDAE	Poachers		
Agonopsis emmelane	northern spearnose poacher	•	×
Agonus acipenserinus	sturgeon poacher		x
Bathyagonus nigripinnis	blacklin poacher	X	x
Odontopyxis trispinosa	pygmy poacher		х
Xeneretmus latifrons	blacktip poacher	X	х
Xeneretmus triacanthus	bluespotted poacher	X	
FAMILY CYCLOPTERIDAE	Lumpfishes and Snallfishes		
Liparis sp.	UID snailfish	X	X
FAMILY BOTHIDAE	Lefteye Flounders		
Citharichthys sordidus	Pacific sanddab (A,J)	X	
Citharichthys stigmaeus	speckled sanddab (A,J)	X	х
Citharichthys sp.	sanddab (A,J)	X	х
FAMILY PLEURONECTIDAE	Righteye flounders		
Atheresthes stomias	arrowtooth flounder (A,J)	X	X
Glyptocephalus zachirus	rex: sole (A,J)	X	x
Hippogiossoides elassodon	flathead sole	X	×
Lepidopsetta bilineata	rock sole (A,J)	X	X
Lyopsetta exilia	slender sole (A,J)	X	x
Microstomus pacificus	Dover sole (A,J)	X	×
Parophrys vetulus	English sole (A,J)	X	X
Platichthys stellatus	starry llounder (A)	X	
Pleuronichthys coenosus	C-O sole (A)		×
Psettichthys melanostictus	sand sole (A)	X X	X

•

.

Table 3.

Species composition and relative abundance for the otter trawl of the most common fish species (less than or equal to 1% of abundance CPUE value or occurring at least 3 out of 4 seasons) by strata and season. Fish are listed in decreasing order of abundance for all strata and seasons combined.

Species		1		>					
	W 8 6	SP	SU	AU	W 8 7	W 8 8	SP	SU	UA
English sole	3.93	18.84	36.27	18.31	9.20	11.90	3.70	21.59	13.19
ratish	47.19	20.29	34.31	7.04	40.00	33.33	20.37	10.23	4.86
slender sole	16.29	20.29	5.88	40.85	17.20	21.00	50.00	13.64	
Dover sole	5.62	33.33	20.59	9.86	1.20	11.26	3.70	32.95	5.56
Pacific hake	21.35		1.96	2.82	20.80	15.37	12.96	4.55	15.97
speckled sanddab									
rock sole									
shiner perch									
Pacific cod								1.14	
Pacific tomcod				1.41					7.64
quillback rockfish	2.25	4.35		2.82	1.20	2.16		4.55	
spiny dogfish				4.23					
flathead sole									
blackbelly eelpout					1.20	0.65	1.85	1.14	
pile perch									
rex sole				2.82		1.30	5.56		
blacktip poacher	1.12	1.45			1.20	1.52		2.27	
pallid eelpout				1.41			1.85		13.19
blackfin poacher				2.82	1.20			3.41	3.47
blackfin eelpout								3.41	4.86
sand sole									
Pacific herring									
soft sculpin				2.82					
plainfin midshipman					2.40				
starry flounder									
Pacific staghorn sculpin				1.41					
snake prickleback									•
C-O sole									
northern sculpin									
longnose skate					1.20			1.14	
sablefish		1.45							
red brotula				1.41					
northern ronquil									
Pacific sanddab									
slim sculpin									

Table 3. cont'd

.

.

Species			100 M		80 M				
	W 8 6	SP	SU	AU	W 8 7	W 8 6	SP	SU	AU
English sole	29.82	48.06	34.41	15.25	29.23	33.10	32.04	46.74	46.69
ratfish	34.21	27.91	26.88	16.95	26.15	2.87	3.87	9.78	22.10
slender sole	2.63	13.18	3.23	6.78	13.85		19.72	8.15	18.23
Dover sole	11.40	3.10	4.30	15.25	0.77	2.17	3.17	1.09	1.10
Pacific hake	13.16	2.33	5.38	6.78	27.69	2.87	7.04	11.96	8.01
speckled sanddab									
rock sole									
shiner perch			1.08						
Pacific cod				5.08					
Pacific tomcod	•			3.39		2.77	0.70		
quillback rockfish	3.51		2.15	11.86		0.79	0.35	2.72	1.10
spiny dogfish			20.43	3.39				5.98	
flathead sole		1.55				7.61	5.99	3.80	0.83
blackbelly eelpout pile perch	0.88			1.69		1.98	14.79	9.24	0.55
rex sole	3.51	0.78		5.08			5.63		
blacktip poacher pallid selpout	0.88					0.99	4.58	0.54	
blackfin poacher			2.15	1.69					
blackfin eelpout				3.39					
sand sole Pacific herring									
soft sculpin				3.39					
plainfin midshipman									
starry flounder									
Pacific staghorn sculpin									
snake prickleback									
C-O sole									
northern sculpin									
longnose skate									
sablefish									
red brotula									
northern ronguil									
Pacific sanddab									
slim sculpin									

.

.

Table 3. cont'd

Species		40	M		20 M				
	8 W 8	SP	SU	AU	W 8 6	SP	SU	ÂU	
English sole	46.08	30.77	20.67	45.12	8.82		33.33	37.93	
ratfish									
slender sole			1.68	5.58	8.82			3.45	
Dover sole		15.38	1.12						
Pacific hake									
speckled sanddab	5.72	7.69		2.33		63.64	22.22		
rock sole	7.10	24.36	6.15	6.9 8	23.53	27.27	7.41	10.34	
shiner perch		6.41					25.93	37.93	
Pacific cod			49.72						
Pacific tomcod	3.28		8.94						
quillback rockfish	2.12		1.12	4.19				1.72	
spiny dogfish			3.35		_				
flathead sole			0.56		14.71				
biackbelly esipout			0.56						
pile perch	27.33			3.72					
rex sole			1.68	1.88					
blacktip poacher patlid eelpout		2.56							
blackfin poacher									
blackfin eelpout									
sand sole		1.28				9.09			
Pacific herring			2.79	-			3.70		
soft sculpin									
plainfin midshipman		1.28	1.12						
starry flounder							3.70	1.72	
Pacific staghorn sculpin							3.70		
snake prickleback	3.81							•	
C-O sole					2.94				
northern sculpin		2.56							
longnose skate									
sablefish									
red brotula									
northern ronguil				1.40					
Pacific sanddab				1.40					
slim sculpin		1.28							

Table 4.

;

Species composition and relative abundance for the beam trawl of the most common fish species (less than or equal to 1% of abundance CPUE value or occurring at least 3 out of 4 seasons) by strata and season. Fish are listed in decreasing order of abundance for all strata and seasons combined.

.

	RADCAD					135 M			
	W 8 6	SP	SU	AU	W 8 7	W 8 6	SP	SU	AU
slender sole	11.17	39,14	18.75	16.67	45.05	21.01	43.15	16.67	
ratfish	38.83	45.66	37.50	16.67	9.91	10.58	34.15	9.52	12.77
Dover sole	11.17	2.15	12.50	5.56		6.95	6.75	21.43	
blackbelly eelpout			6.25			52.61			
English sole	5.50			16.67					
plainfin midshipman	5.50			5.56	20.12				6.38
blackfin poacher		4.37	6.25	11.11	9.91		6.75	16.67	6.38
quilback rockfish			6.25					4.76	21.28
shiner perch									
slim sculpin									4.26
speckled sanddab								9.52	
rock sole									4.26
Pacific hake	11.17			11.11		1.74			4.26
Pacific staghorn sculpin		4.37							
rex sole							2.25	4.78	
blackfin se ipout								9.52	12.77
•									
				5.56					
						6.95	2.25		
• •				5.58	5.11				
					5.11		2.25	4.76	
Pacific tomcod									2.13
longnose skate		4.37					2.25	2.38	2.13
pile perch									
flathead sole					5.11				
sand sole									
tubesnout									
snailfish sp.				5.56					
C-O sole									
red brotula									
sturgeon poacher									2.13
spiny dogfish									
saddleback gunnel									
soft sculpin									2.13
longfin smelt									
buffalo sculpin									
walleye pollock									
arrowtooth fl.									
Pacific cod									,
longnose skate pile perch flathead sole sand sole tubesnout snailfish sp. C-O sole red brotula sturgeon poacher spiny dogfish saddleback gunnei soft sculpin longfin smelt buffalo sculpin waileye pollock		4.37		5.58	5.11	6.95			2.13 2.13 2.13 2.13 2.13

Table 4. cont'd.

•

	100 M					80 M			
	W 8 6	SP	SU	AU	W 8 7	W 8 6	ŞP	SU	AU
stender sole	4.49	24.64	23.87	28.14	37.64	28.18	10.83	24.33	39.88
ratfish	33.71	39.13	44.11	32.08	27.27	19.09	15.33	32.58	20.83
Dover sole	13.48	18.84	11.48	2.51	2.55	6.04	14.57	4.92	
blackbelly eelpout	1.12	7.25		1.25		6.65	10.86		2.36
English sole	2.25	2.17			5.27	6.04	2.89	4.17	1.77
plainfin midshipman	3.37	0.72		1.25		5.75	3.17		16.04
blackfin poacher	• • • •	1.45	6.95	10.22	1.27				
quillback rockfish					3.82	0.29			7.14
shiner perch	26.97					3.93	8.19		0.00
slim sculpin				5.20	1.27	3.64			2.36
speckled sanddab									
rock sole									
Pacific hake	5.62	0.72		1.25	3.82	0.62	1.05	3.50	
Pacific staghorn sculpin	-					0.62	7.14		
rex sole	1.12	0.72	4.83	1.25	1.27	3.05	2.38	2.83	
blackfin eelpout		0.72	2.42	3.76					
bluebarred prickleback				1.25		0.62	3.97	8.33	
roughback sculpin	1.12						2.63		
blacktip poacher		2.17			2.55		7.40		1.77
pygmy poacher									
spinyhead sculpin	2.25		2.42	1.25		1.20			
Northern ronguil						1.82			
snake prickleback							1.05		
Pacific tomcod				8.96		0.58			
longnose skate				1.25	1.27				
pile perch					9.09				
flathead sole	1.12					1.20			1.77
sand sole							2.92		
tubesnout									
snailfish sp.						0.29			
C-O sole						0.91			
red brotula		0.72	2.42		1.27				
sturgeon poacher		0.72							
spiny dogfish			2.42						
saddleback gunnel									
soft sculpin					1				
longfin smelt									
buffalo sculpin									
walleye pollock					1.27				
arrowtooth fl.	1.12					·			
Pacific cod				· .		0.29			

Table 4. cont'd.

		40	м		20 M				
	W 8 5	SP	SU	AU	W 8 6	SP	SU	AU	
slender sole	5.89	3.29	13.85	30.55	17.25	3.44	7.85	22.63	
ratfish			2.12	1.80					
Dover sole	2.72	4.93	4.24	6.58		14,67	11.29	3.58	
blackbelly eelpout	7.46	4.93	42.55	14.38			16.10	8.92	
English sole	20.80	35.52	1.08	5.41	7.13	7.79	11.75	12.50	
plainfin midshipman	2.58		3.72	10.77	1.21		3.93	2.96	
blackfin poacher									
quillback rockfish	2.72	2.06	3.72	2.39	13.71	7.79			
shiner perch	27.26	8.21							
slim sculpin	3.73	3.69	8.37	7.80	4.75	6.04	11.29	11.92	
speckled sanddab	6.46	12.32			5.96	24.98		5.38	
rock sole	1.72	1.44			20.25	7.79	8.28	12.50	
Pacific hake									
Pacific staghorn sculpin	9.75	10.26			2.96	1.75			
rex sole			6.37	1.80			2.62		
blackfin eelpout									
bluebarred prickleback							13.91		
roughback sculpin				1.80		4.28	1.73	10.13	
blacktip poacher				1.80					
pygmy poacher			1.08	4.19		3.44	1.73	2,96	
spinyhead sculpin			1.60						
Northern ronguil	1.58			3.60		6.04	1.73	1.21	
snake prickleback		5.95	1	0.00	5.38	1.75	1.73		
Pacific torncod				3.56					
longnose skate									
pile parch								1.17	
flathead sole									
sand sole					4.17	1.75			
tubesnout					8.33	•			
snailfish sp.			2.12						
C-O sole					1.21	5.19			
red brotula									
sturgeon poacher									
spiny dogfish									
saddieback gunnel			1.08		1.21				
soft sculpin						•			
longfin smelt	•				1.79				
buffalo sculpin					-	1.75			
walleye poliock									
arrowtooth fl.									
Pacific cod									

Table 5.	Species clusters of otter trawl-caught fish, all strata combined by season.
	A = adult. J = iuvenile.

	WINTER 86			SPRING 86	
GROUP	SUBGROUP	SPECIES	GROUP	SUBGROUP	SPECIES
1		slender sole (A) ratfish (A) Pacific hake (A)	1		slender sole (A) ratfish (A) Pacific hake (A)
	b	English sole (A)		b	English sole (A)
11		ratfish (J) rex sole (A)		c	Dover sole (J)
		quillback rockfish Dover sole (J)	11		sablefish ratfish (J) quillback rockfish
	b	slender sole (J) Pacific tomcod (A) blacktip poacher	111	•	plainfin midshipman blacktip poacher
111		black eelpout shiner perch (A) Pacific tomcod (J) flathead sole (A)		þ	snake prickleback slender sole (J) Pacific tomcod (A) flathead sole
١٧		sanddab (A) rock sole (J) shiner perch (J)			rex sole (J) rex sole (A) blackbelly eelpout
		rock sole (A) English sole (J)	17		sanddab (A) sand sole rock sole (A)
	b	sanddab (J) sailfin sculpin C-O sole pile perch (A) staghorn sculpin arrowtooth flounder	v	•	northern sculpin rock sole (J) slim sculpin shiner perch (A) English sole (J)
v	•	spinyhead sculpin plainfin midshipman spiny dogfish Pacific lamprey		Ь	sanddab (J) paliid eelpout walleye poliock
	Ъ.	snake prickleback speckled sanddab (A) pile perch (J) speckled sanddab (J) Pacific sanddab			

,

· .

Table 5. cont'd.

· • •

	SUMMER 86			AUTUMN 86	
GROUP	SUBGROUP	SPECIES	GROUP	SUBGROUP	SPECIES
1 .		English sole (A)	1		siender sole (A)
•					English sole (A)
11	8	ratfish (J)			
		Pacific hake (A)	11	•	rex sole (A) plainfin midshipman
	ъ	siender sole (A)			
		Dover sole (J)		b	Dover sole (J)
111		ratfish (A)		· C	ratfish (A)
		quillback rockfish			
		·		d	ratfish (J) Pacific hake (A)
	Þ	spiny dogfish			blackbeily eelpout
		blackbelly eelpout			olgovnent eelboor
ŧV		shiner perch (J)			spiny dogfish
••	-	starry flounder			soft sculpin
		rock sole (J)			red brotula
		sanddab (A)			
		rock sole (A)		ь	pallid eelpout
		Pacific herring			Pacific hake (J)
					Pacific tomcod (J) blackfin poacher
	þ	Dover sole (A)			black eelpout
		blackfin poacher slender sole (J)			highly geibant
		black eelpout	l iv		speckled sanddab (A)
				_	rock sole (A)
	c	Pacific cod			slander sole (J)
	-	spinyhead sculpin			roughback sculpin
		longnose skate			Pacific torncod (A)
		blacktip poacher			pile perch (J)
					Pacific sanddab (J)
	d	plainfin midshipman			a a state a second state
		rex sole (A)	l V	•	northern ronquil
		flathead sole	1		slim sculpin shiner perch (A)
	•	sanddab (J)	1		Pacific herring
		staghorn sculpin			bluespotted poacher
				ь	spinyhead sculpin
				-	starry flounder
					rock sole (J)
					speckled sanddab (J)
					English sole (J)
				c	Pacific cod

.

flathead sole blacktip poacher .

Table 6.

.

Percent incidence and sample size (in parentheses) of the bloodworm (Philometra sp.) infection in flatfish shown by species, stratum and season in Port Gardner. W = Winter, SP = Spring, SU = Summer, AU = Autumn.

Flatfish Species			RADCAC	>						
		SP	SU	AU	W 87	- w	SP	<u>BOM</u> SU	AU	
arrowtooth flounde)r								~~	
C-O sole										
Dover sole	0(12)	0(1)	0(23)	0(8)	0(3)	2.4(42)	0/851		_	
English sole	0(8)	7.7(13)	0(37)	6.2(16)	0(23)	10 4/354	0(55) 5)6.9(102)	0(9)	0(5)	
flathead sole	Q(1)	0(23)			0(1)	3.7(81)	5.9(17)	3.3(92)		
Pacific sanddab					• •		0.0(17)	0(7)	0(6)	
rex sole	0(1)			0(2)	0(1)	6.6(15)	0(19)	0(4)	0(1)	
rock sole						0(1)	0(2)	•(+)	9(I)	
sand sole slender sole			•			- •	0(11)			
specified sanddab	0(31)	0(32)	0(9)	0(32)	0(51)	0.5(189)	2(97)	0(50)	0(133)	
starry flounder						0(4)		,	•(100)	
	w	1 SP	35M SU	AU	-		4	0 M		
	••	4F	30	AU		W	SP	SÜ	ÂU	
arrowtooth flounder	r					0(2)	0(1)			
C-O sole						V(#)	V(1)			
Dover sole	0(56)	0(5)	0(9)	0(6)		0(20)	0(38)	0(17)		
English sole	1.8(55)	50(2)	5.3(19)	10.5(19)		1.4(585)		0(38)	0(12)	
flathead sole			0(29)			0(11)		0(1)	5.7(106) 0(1)	
Pacific sanddab		• · · ·				0(1)		v())	0(3)	
rex sole rock sole	0(6)	0(3)	0(2)			0(5)		0(12)	0(7)	
Sand sole	100(1)			0(2)		16.5(79)	25(28)	7.1(14)	0(16)	
siender sole	0(131)	0/40				0(7)	0(5)			
specked sanddab	5(131)	0(48)	0(19)	0(50)		0(47)	0(18)	0(29)	0(63)	
starry flounder						1(99)	1.5(66)	0(1)	0(6)	
		• 1	0 0 M							
	W	SP	SŲ	ÂŬ	•	W	<u>2</u> 2	<u>0 M</u> SU		
rrowtoath flounder	0(1)						••	30	AU	
C-O sole	-(-/						_			
Dover sole	0(25)	0(30)	0(9)	0(11)		0(3)	0(5)	0(1)		
English sole	2.8(36)	9.2(65)	3.1(32)	11.1(9)			0(17)	0(28)	0(6)	
athead sole	0(1)	0(2)				6.7(15)	0(9)	2.8(36)	0(42)	
acific senddeb	- /	1-1				0(5)				
ex sole	0(5)	0(2)	0(2)	Q(1)	·		0/41			
ock sole				-(-)		7.7(39)	0(1) 8.3(12)	0(6)		
						0(7)	0(3)	0(21)	3.7(27)	
-		0(41)	8.3(12)	0(25)						
lender sole	6.7(31)	•(++)		V(4V)		U(321	U!	0/1#\	A/2AL	
and sole lender sole peckled sanddab tarry flounder	0.7(31)	0(41)	9.3(1 <u>8</u>)	V(40)		0(32) 0(23)	0(4) 0(38)	0(16) 0(6)	0(40) 0(13)	

Table 7. Measurements of temperature, salinity, dissolved oxygen and water clarity by stratum and season at Port Gardner. W = Winter, SP = Spring, SU = Summer, AU = Autumn.

SITE		SUR	ACE		BOTTOM					
			Т	EMPER/	ATURE 9	C				
	W	SP	SU	AU	W	SP	ົ່ຽປ	AU		
RADCAD	6.5	10.0	15.2	15.0	8.0	9.0	11.0	13.0		
135M	6.0	10.3	13.6	14.4	7.8	9.2	11.8	12.0		
100M	7.3	10.5			8.0	9.5				
80 M	7.0	10.5	11.9	14.0	7.5	9.5	11.0	12.0		
4 0 M	6.5	10.7	10.5		7.5	9.0	11.5	13.0		
20M		10.8	18.1	15.0		9.5	11.5	13.0		
				SALINI	TY o/oo					
RADCAD		18.53	23.58			29.67	29.81	30.81		
135M	29.68	22.98	24.29	28.23	26.42	29.98	29.79	30.56		
100M	29.62		•		29.42	29.81				
80 M	29.82	16.79	22.34	28.73	29.09	29.73		30.58		
4 0 M	18.59		29.82		23.12	29.49	29.77	30.33		
20M			19.58	28.32		29.12	29.58	30.07		
			DI	SSOLVE		EN				
RADCAD	9.24	11.52	12.30	8.64	9.25	9.36	8.12	6.41		
135M		10.93	12.85	9.44	9.49	9.18	7.74	7.38		
100M					8.69	8.92				
8 0 M	10.58	10.72	12.40		10.54	8.94	8.19	7.14		
4 0 M			14.20	7.17		8.13	8.72	7.40		
20 M			8.08	10.56	10.40	28.25	8.25	8.07		
		รเ	JRFACE	LIGHT	PENETR	ATION ((m)			
			W	SP	SU	AU	-			
RADCAD			5.5	4.3	4.5	4.0				
135M			6.5	5.4	4.0					
100M			3.3	3.0						
8 O M			3.5	3.0	3.0	5.0				
4 O M			3.8	3.2	3.0	5.0				
20 M				3.2	3.0	5.5				

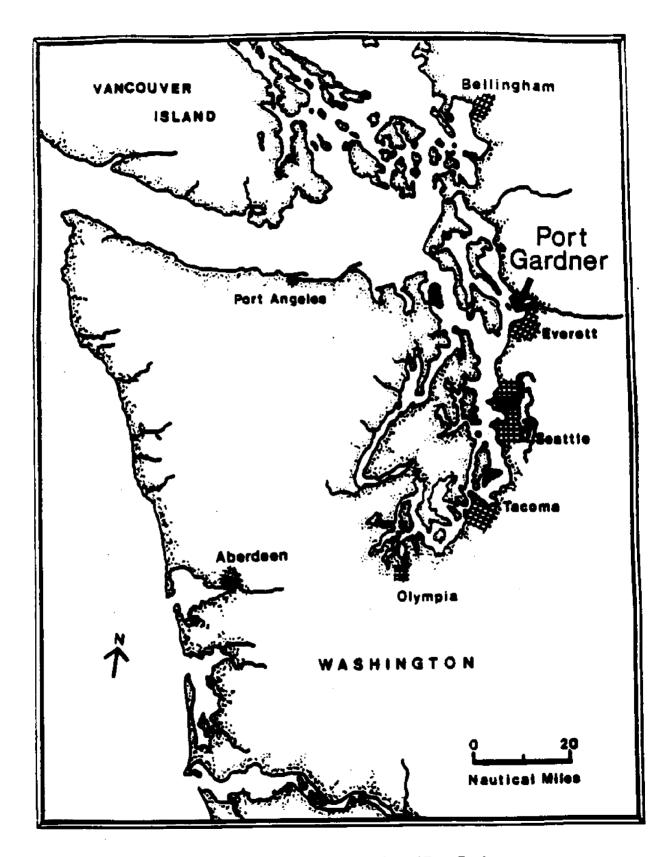
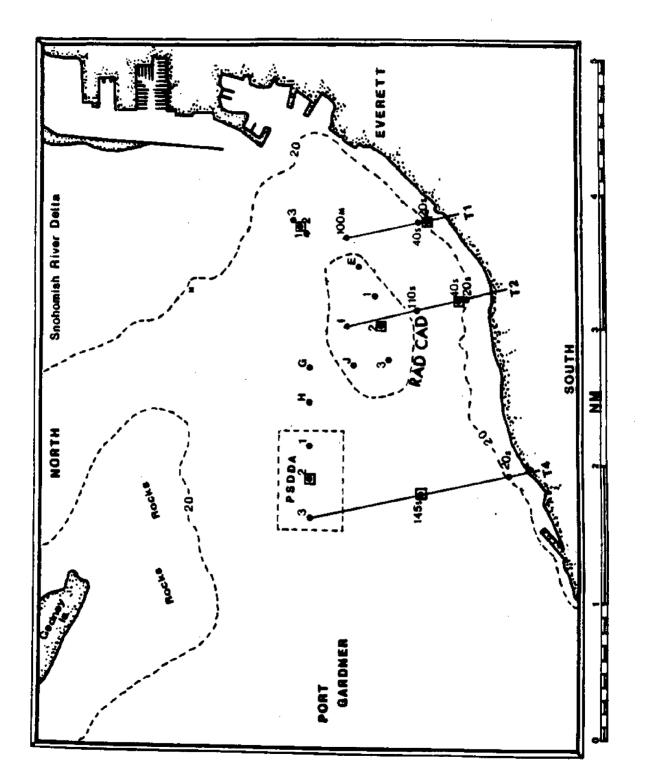
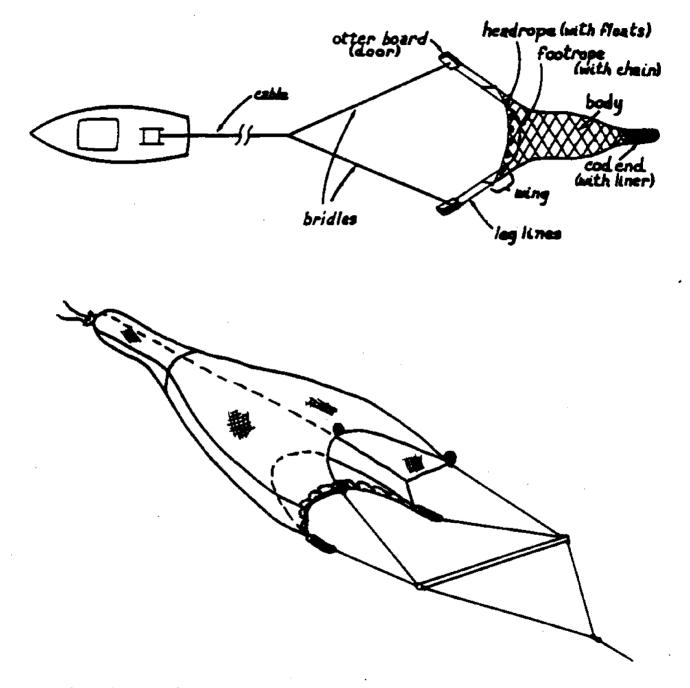
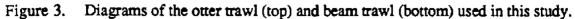





Figure 1. Map of western Washington showing the location of Port Gardner.

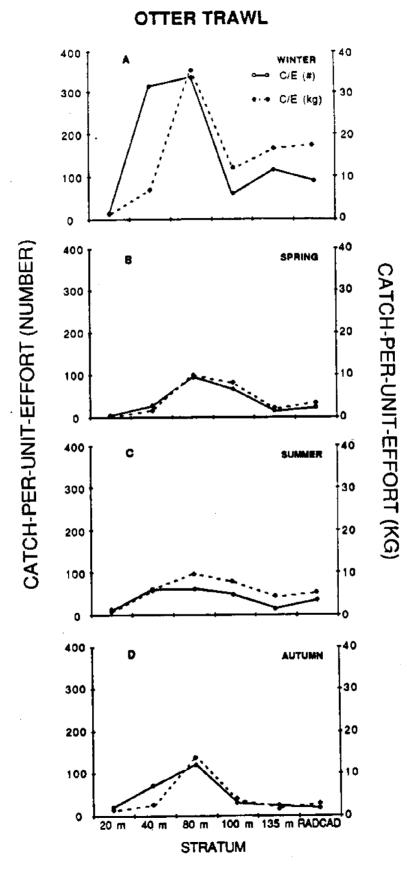


Figure 4. Catch-per-unit-effort abundance [C/E (#)] and catch-per-unit-effort biomass [C/E (kg)] of otter trawl caught bottomfish by stratum and season (A-D).

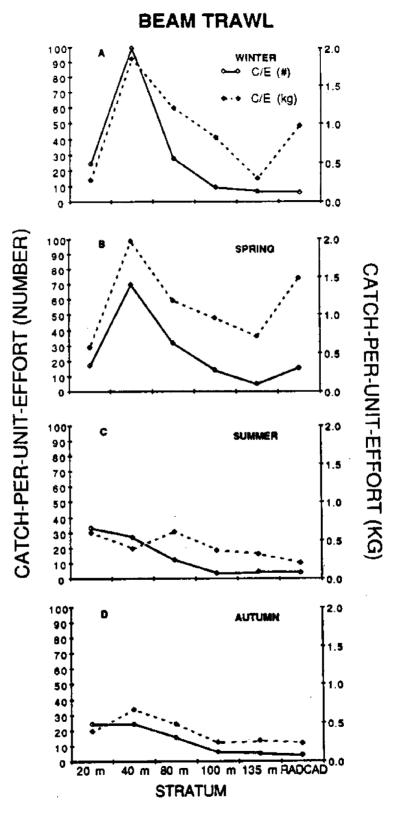


Figure 5. Catch-per-unit-effort abundance [C/E (#)] and catch-per-unit-effort biomass [C/E (kg)] of beam trawl caught bottomfish by stratum and season (A-D).

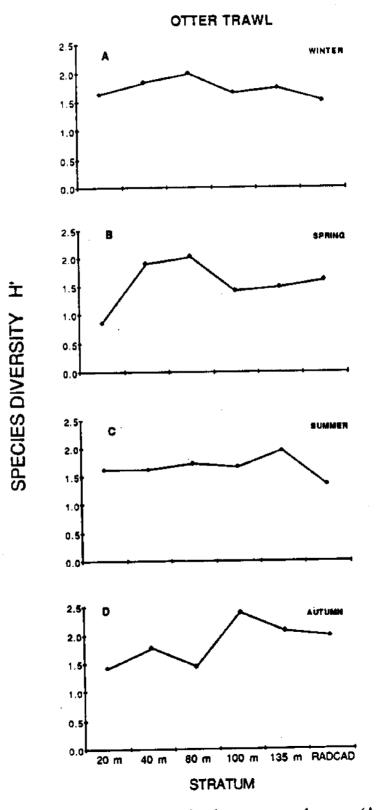


Figure 6. Species diversity (H') of otter trawl catches by stratum and season (A-D).

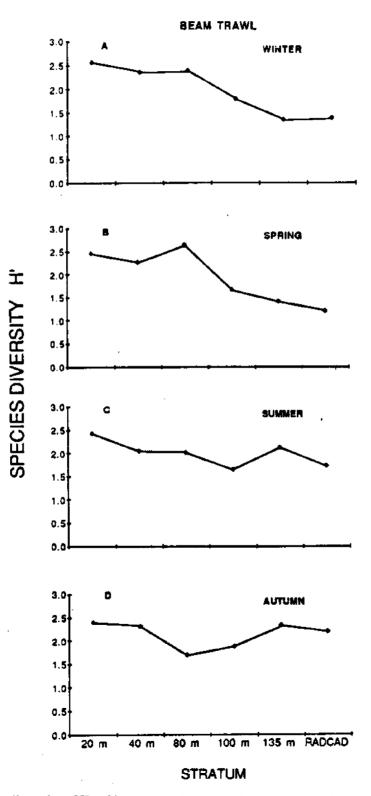


Figure 7. Species diversity (H') of beam trawl catches by stratum and season (A-D).

- -

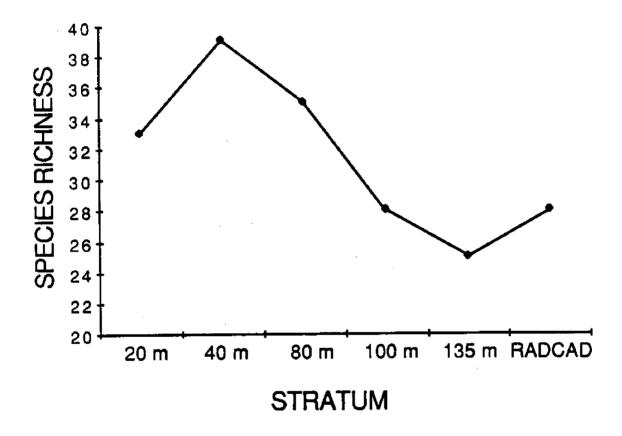


Figure 8. Species richness of otter trawl and beam trawl caught fish for all seasons combined by stratum.

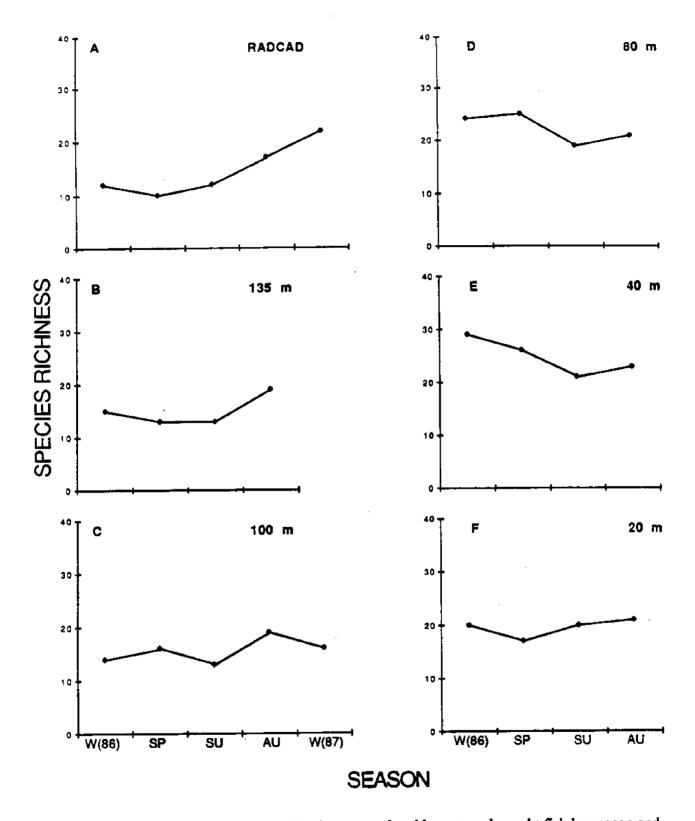


Figure 9. Species richness of combined otter trawl and beam trawl caught fish by season and stratum (A-F).

PACIFIC HAKE

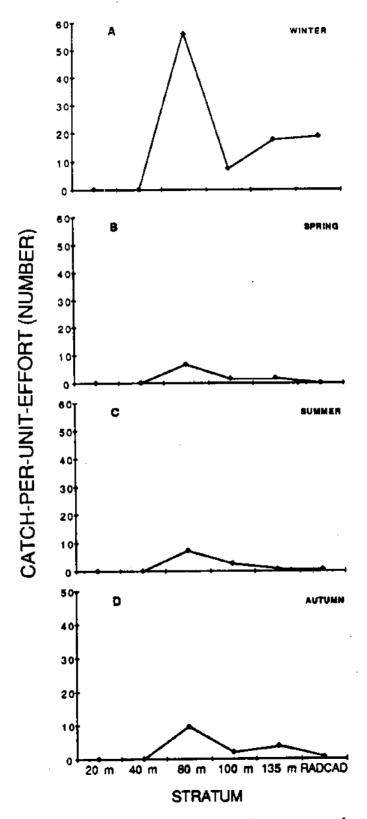


Figure 10. Catch-per-unit-effort abundance of Pacific hake by stratum and season (A-D).

Figure 11. Pacific hake length-frequency plots for all strata combined by season (A-E). NOTE: The scale of the vertical axis changes between seasons. Average lengths (mm) at age are as follows: 65, 167, 272, 315, 344 and 364+ for ages 1 through 5+, respectively.

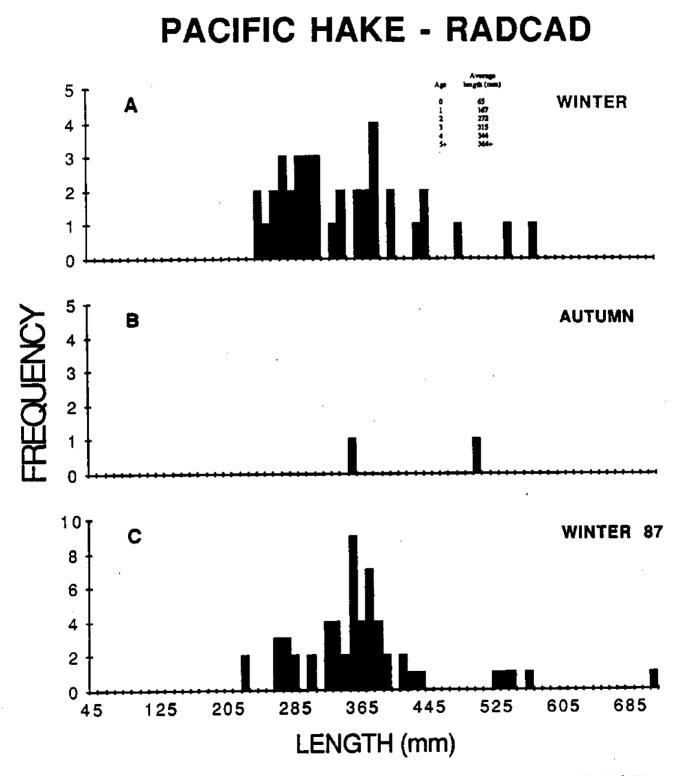


Figure 12. Pacific hake length-frequency plots for RADCAD stratum by season (A-C). NOTE: The scale of the vertical axis changes between seasons. (See Fig. 12 for lengths at age.)

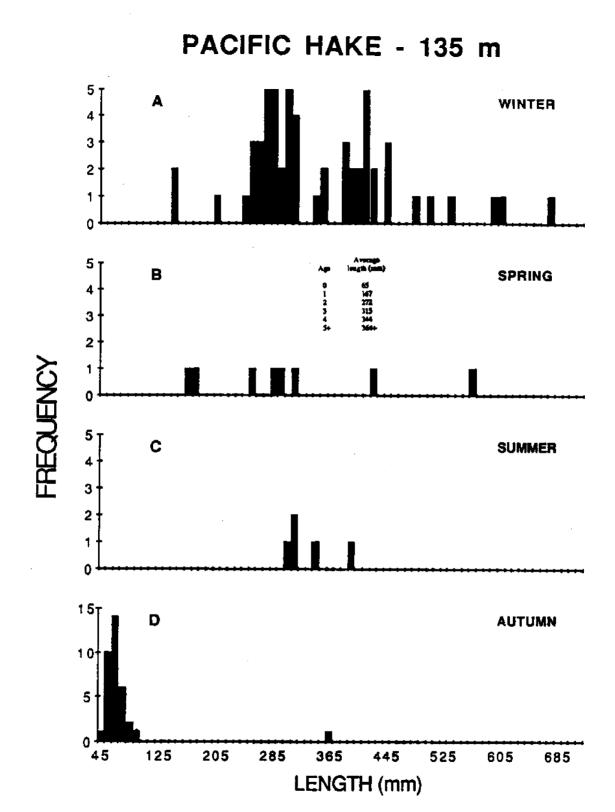


Figure 13. Pacific hake length-frequency plots for the 135m stratum by season (A-D). NOTE: The scale of the vertical axis changes between seasons. (See Fig. 12 for lengths at age.)

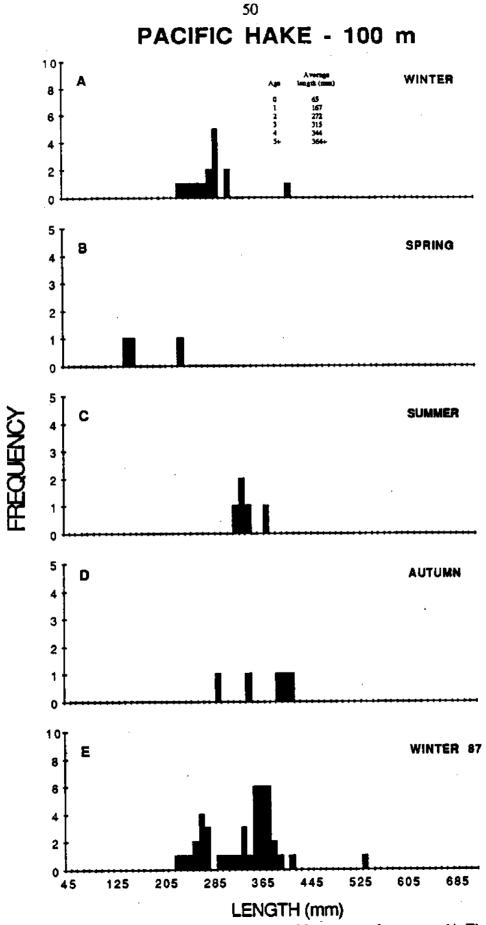


Figure 14. Pacific hake length-frequency plots for the 100m stratum by season (A-E). NOTE: The scale of the vertical axis changes between seasons. (See Fig. 12 for lengths at age.)

• .

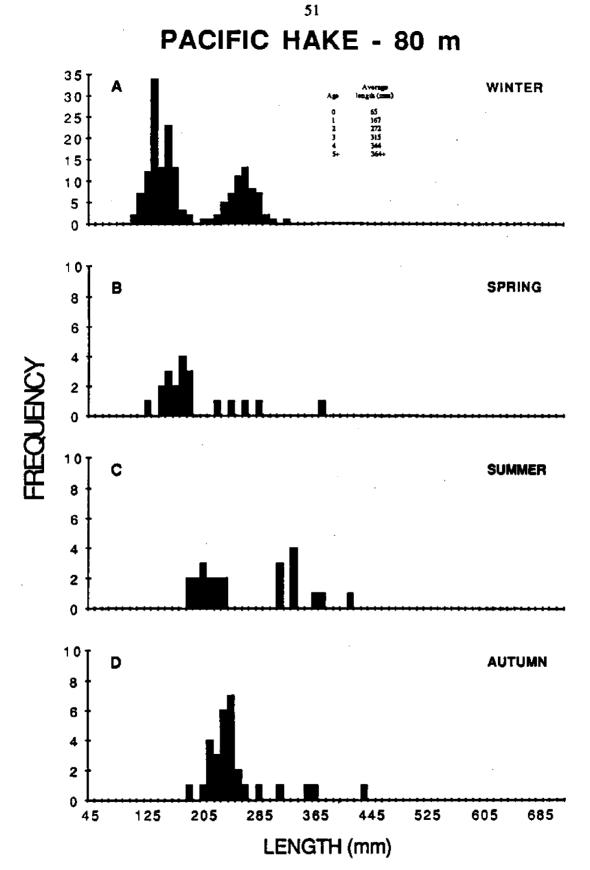


Figure 15. Pacific hake length-frequency plots for the 80m stratum by season (A-D). NOTE: The scale of the vertical axis changes between seasons. (See Fig. 12 for lengths at age.)

ENGLISH SOLE

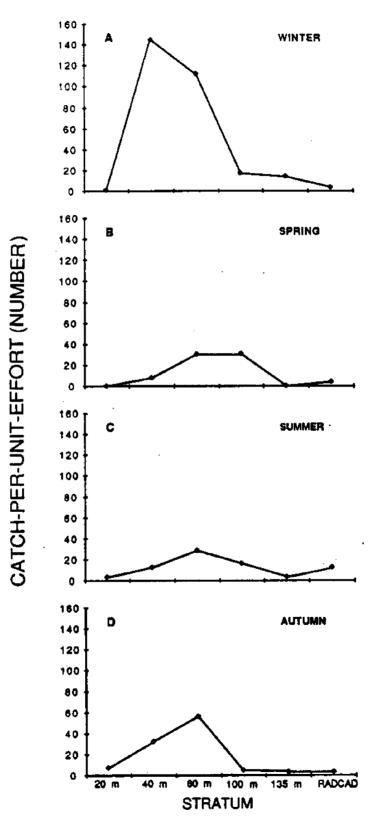


Figure 16. Catch-per-unit-effort abundance of English sole by stratum and season (A-D).

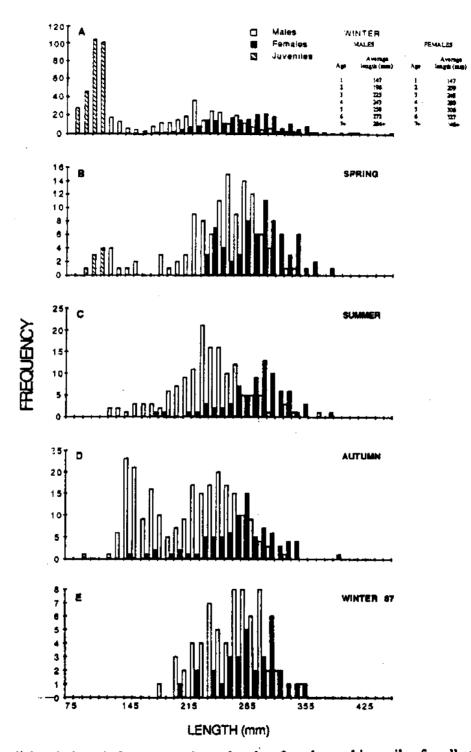


Figure 17. English sole length-frequency plots of males, females and juveniles for all strata combined by season (A-E). Average lengths (mm) at age are as follows: males—147, 196, 225, 243, 258, 272 and 284+ for ages 1 through 7+, respectively; females— 147, 209, 248, 280, 306, 327 and 346+ for age 1 through 7+, respectively. NOTE: The scale of the vertical axis changes between seasons.

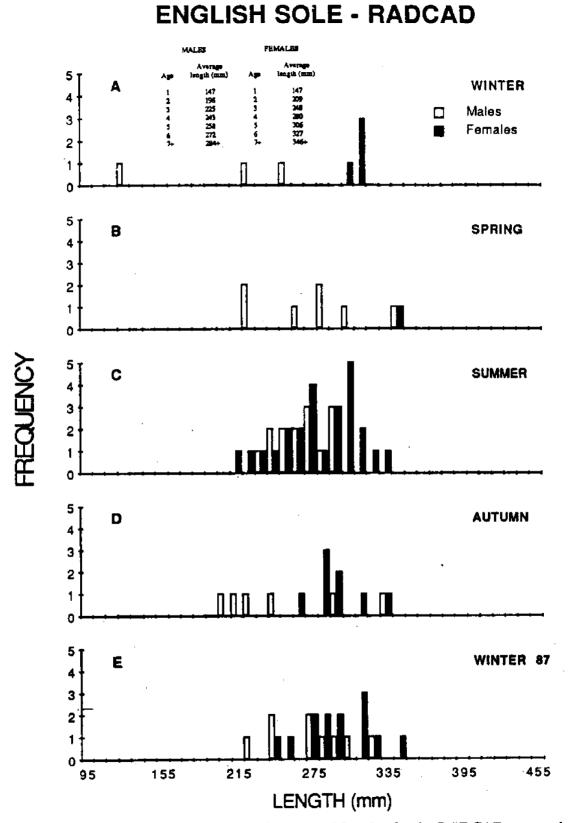


Figure 18. English sole length-frequency plots of males and females for the RADCAD stratum by season (A-E).

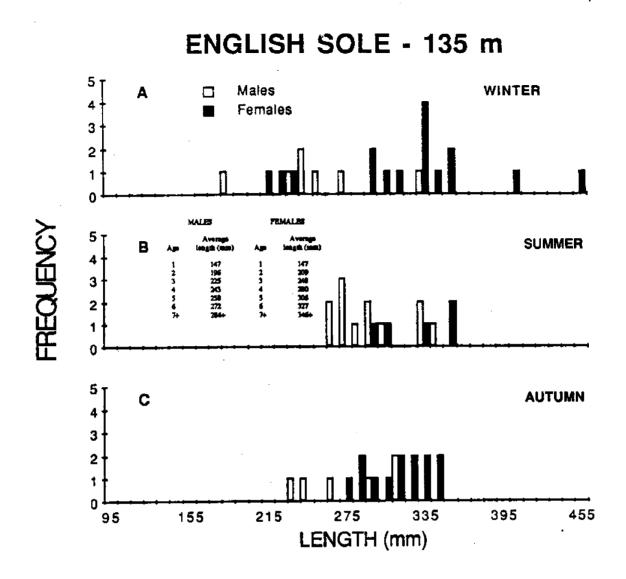


Figure 19. English sole length-frequency plots of males and females for the 135m stratum by season (A-C). (See Fig. 18 for lengths at age.)

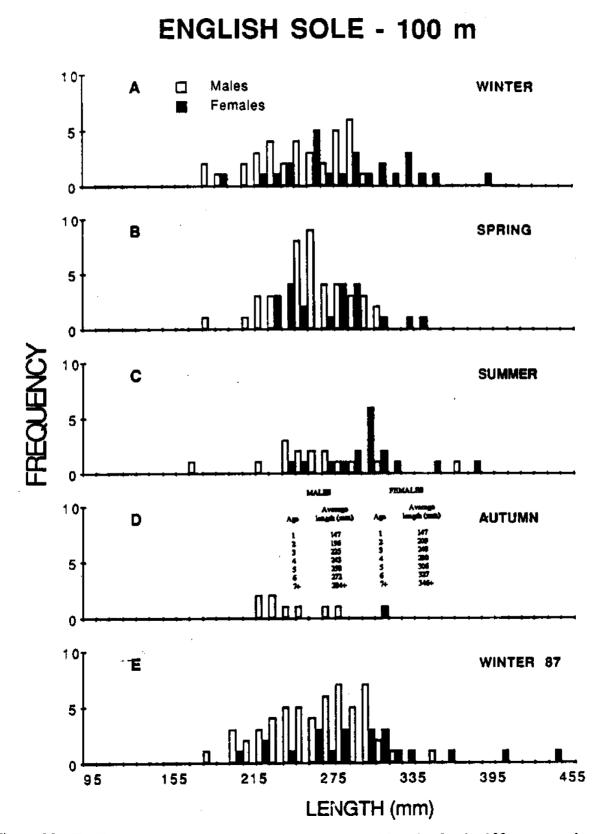


Figure 20. English sole length-frequency plots of males and females for the 100m stratum by season (A-E). (See Fig. 18 for lengths at age.)

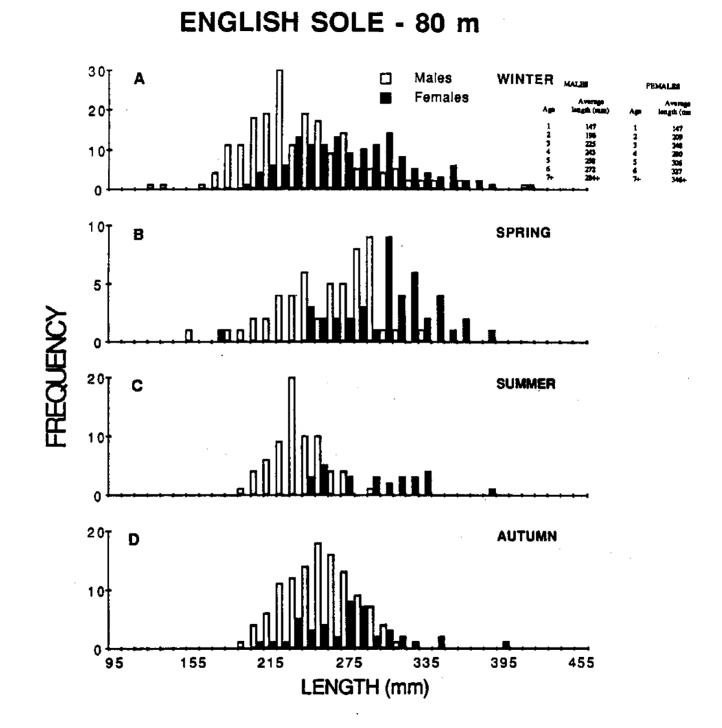


Figure 21. English sole length-frequency plots of males and females for the 80m stratum by season (A-D). (See Fig. 18 for lengths at age.) NOTE: The scale of the vertical axis changes between seasons.

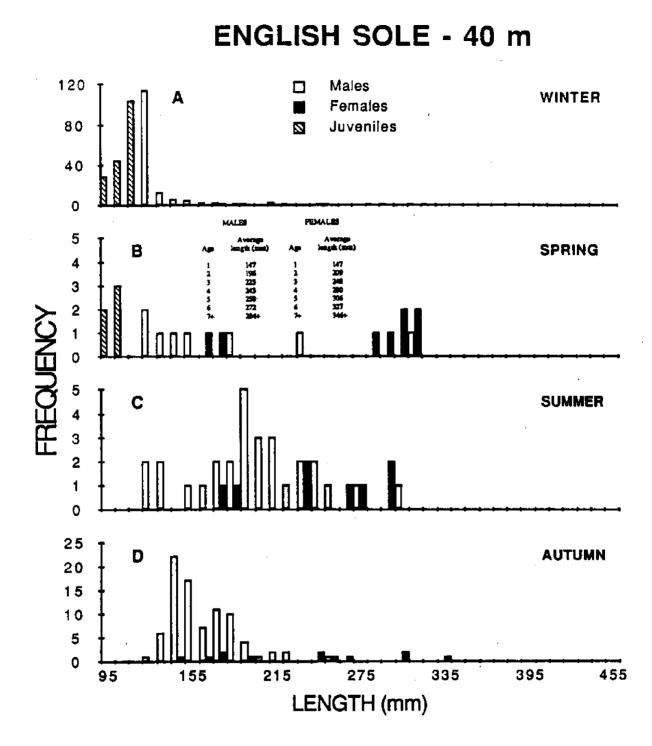


Figure 22. English sole length-frequency plots of males, females and juveniles for the 40m stratum by season (A-D). (See Fig. 18 for lengths at age.) NOTE: The scale of the vertical axis changes between seasons.

Figure 23. Catch-per-unit-effort abundance of slender sole by stratum and season (A-D).

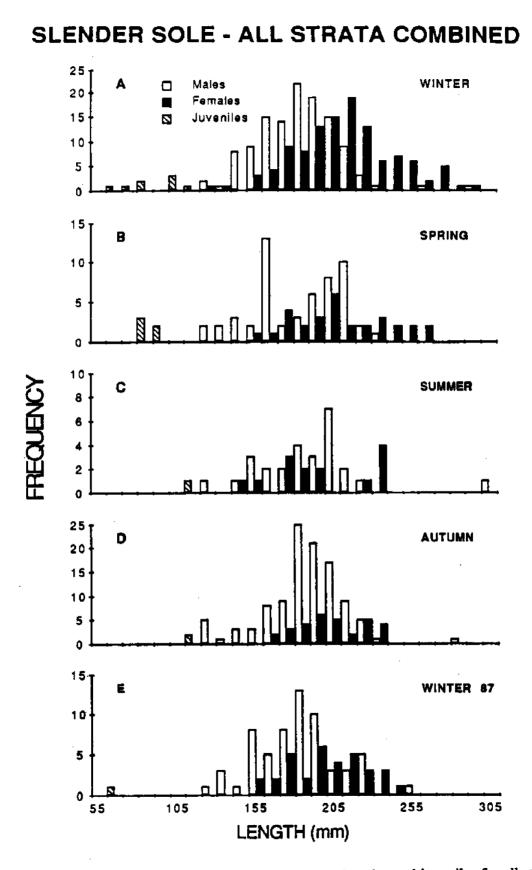


Figure 24. Slender sole length frequency plots of males, females and juveniles for all strata combined by season (A-E). NOTE: The scale of the vertical axis changes between seasons.

SLENDER SOLE - ALL SEASONS COMBINED

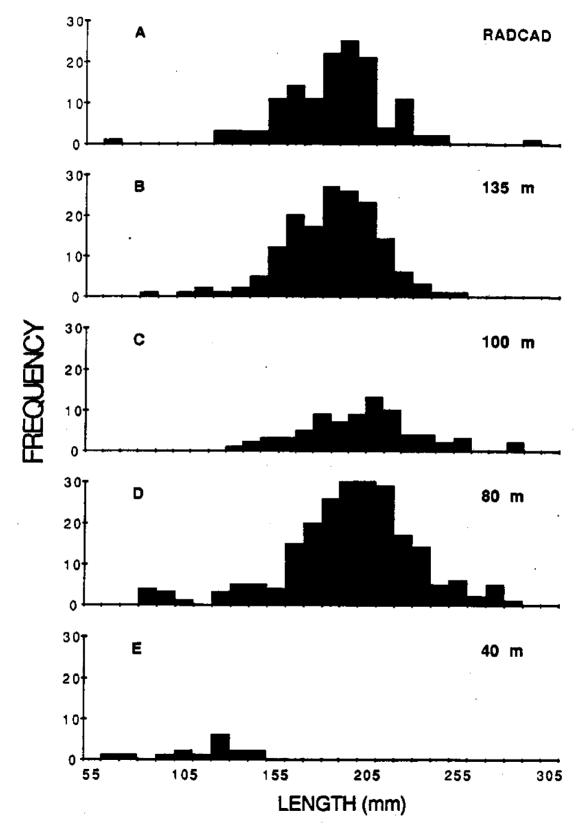


Figure 25. Slender sole length-frequency plots for all seasons combined by stratum (A-E).

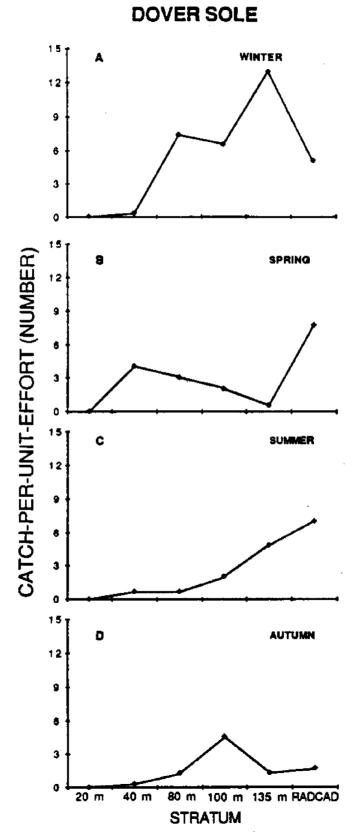


Figure 26. Catch-per-unit-effort abundance of Dover sole by stratum and season (A-D).

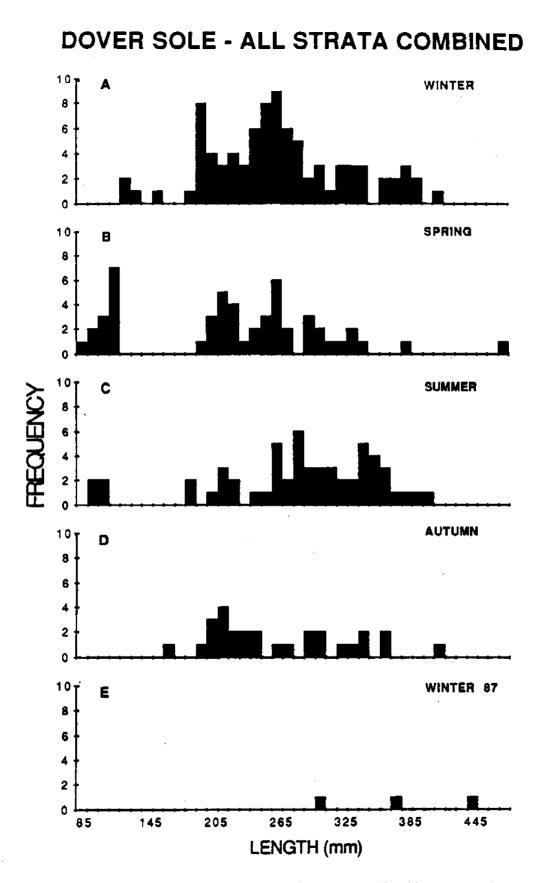


Figure 27. Dover sole length-frequency plots for all strata combined by season (A-E).

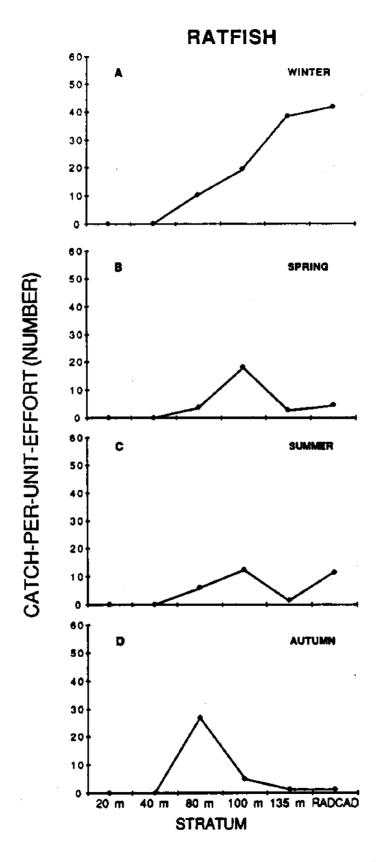


Figure 28. Catch-per-unit-effort abundance of ratfish by stratum and season (A-D).

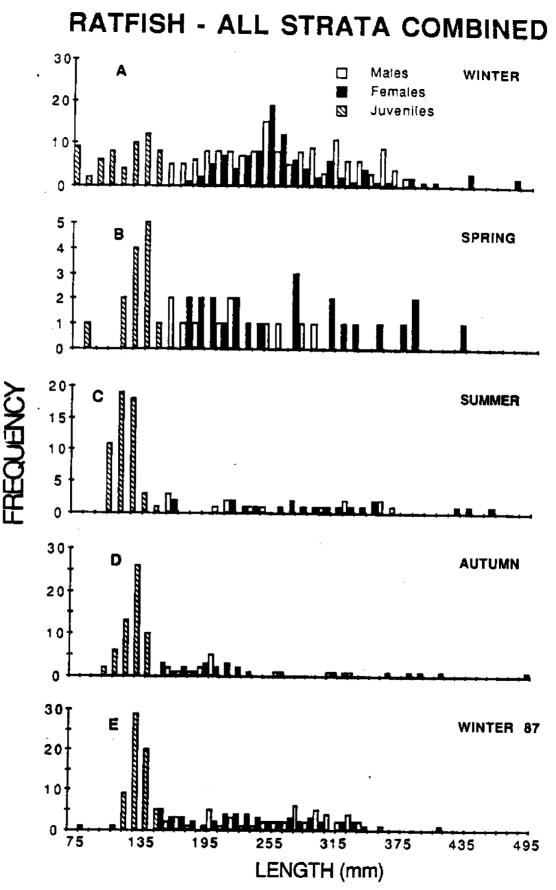


Figure 29. Ratfish length-frequency plots for males, females and juveniles for all strata combined by season (A-E). NOTE: The scale of the vertical axis changes between seasons.

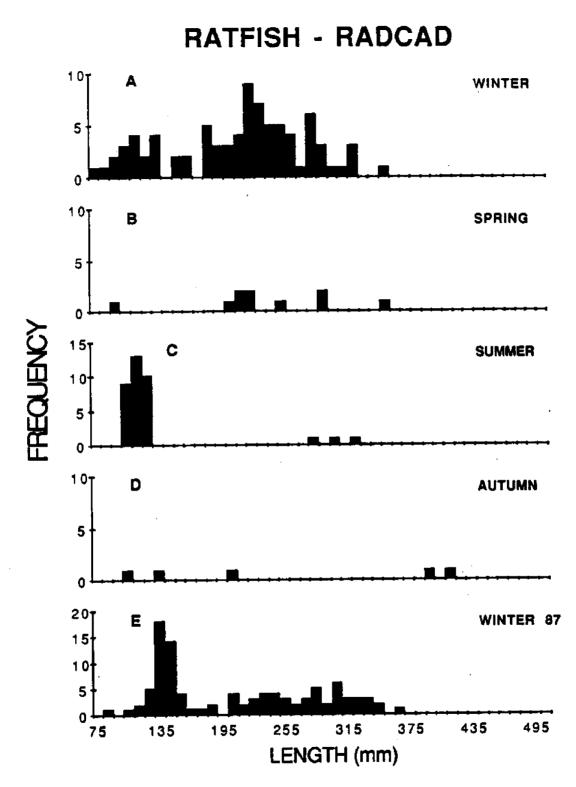


Figure 30. Ratfish length-frequency plots for RADCAD by season (A-E). NOTE: The scale of the vertical axis changes between seasons.

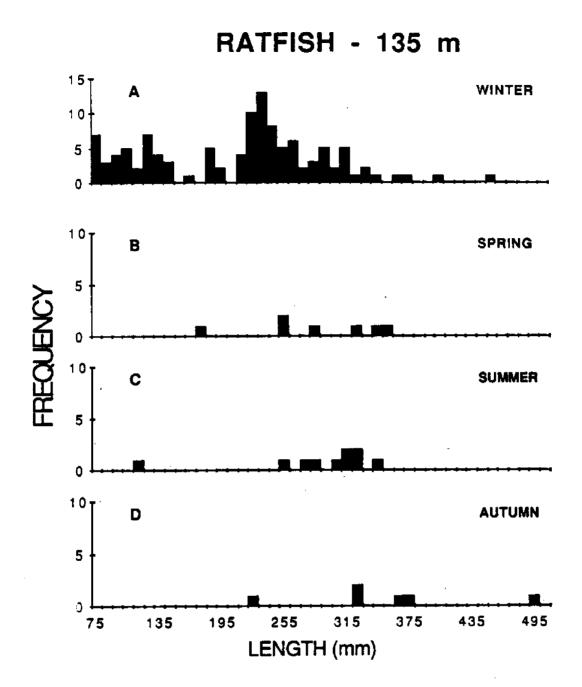


Figure 31. Ratfish length-frequency plots for 135m stratum by season (A-D). NOTE: The scale of the vertical axis changes between seasons.

Figure 32. Ratfish length-frequency plots for 100m stratum by season (A-E). NOTE: The scale of the vertical axis changes between seasons.

Figure 33. Ratfish length-frequency plots for 80m stratum by season (A-D). NOTE: The scale of the vertical axis changes between seasons.

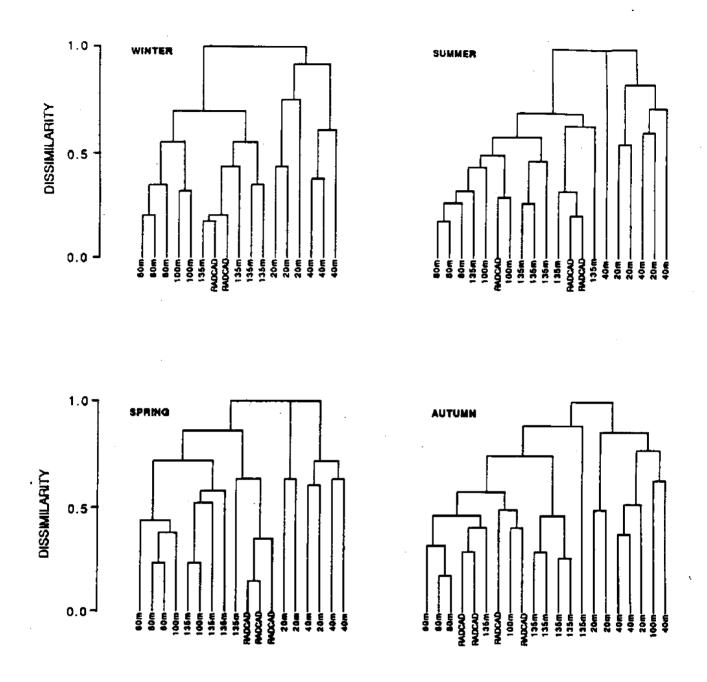


Figure 34. Dendrogram of Bray-Curtis distance measure between stations by season.

APPENDIX TABLES

Appendik Table 1.

Total, **evenge (cetch per** unit effort-CPUE) and standard deviation of abundance and biomest (g) for botomfish species caught by otter travit from the RADCAD, 135M, 100M, 80M, 40M and 20M strate in Port Gardner during Winter 1966. Species are isled in decreasing order of total abundance.

									STRA	STRATUM RADCAD WINTER 86 OTTER TRAW	WINTER 86 O	TTER TRAWL
	3	Sta 1	ŝ	Sta 2	ŝ							
Common Name	Abund	ibund Blomass	Abund	Biomase	Abund	Blomass	Tot Abund	Aw Abund	SI Dev	Tot Biomasa	Ave Blom	St Dev
radish - eduit			*	8015	22	5920	99	33.00	15.56	13935	6967.50	1481.39
Pacific hale - adult			29	7490	ca	4720	90	19.00	14.14	12210	6105.00	1958.69
elender sole - adult			5	975	40	410	28	14.50	0.19 0	1385	692.50	399.52
ralfish- juvenike			61	250	ŝ	145	18	9.00	5.66	395	197.50	74.25
Dover sole - adult			2	1170	•	1260	ç	5.00	2.83	2430	1215.00	63.64
English sole - adult			•	1010	n	190	'n	3.50	0.71	1500	750.00	367,70
quilibeck rocklish			9	1700	-	520	4	2.00	1.41	2220	1110.00	634.39
bleckip poscher			2	32	0	0	2	00'1	1.41	32	16.00	22.63
flathead sole - adult			0	0	-	160	-	0.50	0.71	160	80.00	113.14

.

•

	Tran	11456	PSDOA	51a 1	PSODA	V 54± 2	PSDDA	Sta 3						
Common Name	Abund	Biomese	Abund Blo	Biomasa	Abund	Biomass	Abund 8	Biomass	Biomess Tot Abund	Ave Abund	NO IS	Tot Biomas	Tol Biomas Avs Biomass	20 Dev
ratista - adult	40	3800		8740	11	2880	28	3855	122.00	30.50	13.45	19275.00	4818.75	2652.14
standar aola - adult	1	830	24	1260	26	1255	28	1390	126.00	31.50	6.22	4735.00	1183.75	243.97
Pacific halta - actual	-	410	8	9835		8690	цġ	1150	71.00	17.75	17.17	20185.00	5046.25	4961.60
Eventsch anto - actual		0	-	3605	đ	795	4	080	34.00	8.50	6.08	5580.00	1395.00	1661.96
Dover sola - achili	28	4900	5	2455	•	¢	a	0	43.00	10.75	13.23	7355.00	1838.75	2346.13
rettich- invenite		50	27	290	-	61	٥	٥	35.00	8,75	12.70	338.00	84.50	137.76
milihack rockfish	. 61	400	N	485	-	008	0	a	6 .00	2.00	1.29	1785.00	446.25	369.08
Nachtio macher	2	90	,	20	0	0	-	Ξ	7.00	1.75	1.29	64.00	16.00	12.54
	e	þ	-	150	-	25	•	•	1.00	0.75	0.58	175.00	43.75	71.81
blackhallt admost	1	50	• •	a	0	0	0	•	3.00	0.75	1.00	50.00	12.50	25.00
alender ede - kurenile		e	•	0	0	10	0	0	3.00	0.75	1.00	10.00	2.50	5.00
arrowtonth foundar	• •		-	300	0	0	0	0	1.00	0.25	0.50	300.00	75.00	150.00
			•	0	-	4000.5	0	0	1.00	0.25	0,50	4000.50	1000.13	2000,25
Decilie henred	G	. a		a	0	0	0	•	1.00	0.25	0.50	9.00	2.25	4.50
Decide transmid - adult	ġ	9	0	0	-	100	0	•	1.00	0.25	0.50	100.00	25.00	50.00
olainen midshindhan	Ċ	0	-	30	0	0	0	•	1.00	0.25	0.50	00.0 C	7.50	15.00
son sola - invenile	G	0	0	0	0	٥	•	0	0.00	0.0	00.0	0.00	0.00	00.0
string the field		• •	-	1495	0	0	0	•	1.00	0.25	0.50	1495.00	373.75	747.50
spinyheed sculpin	• •	•	-	25	0	٥	9	•	1.00	0.25	0.50	25.00	6.25	12.50
TOTAL	6 2	10455	162	2 8 9 9 9	85	18663	9 9 9	7389	462.00	115.50	50.11	65511.50	16377.68	9668.16
TOTAL	6 2	10455	162	2 8 9 9 9	ар 10	18669	99	7369	462.00	115.50	50.1	Ξ		65511.50

-

Appendix Table 1. confd.

				1						
		1001	Tran							
Common Name	Abum	Biomaco Biomaco	Abund	Biomasa	Tot Abund	Ave Abund	20 Dev	Tot Blomas	Ave Biomasa	SI Dev
retish - adult	37	6960	2	580	39,00	19.50	24.75	7540 00	00 0226	4611.24
Endish sola - adult	26	5006 2	•	1710	34 00	17.00	12 74	6716 30	9956 40	
Pacific hale - actual		1600) ve	760	15.00	2 50				23.002
	! •		•:					00.0002		
			2 <	0000	5.0	0.0 0	0.0	07-94-00	1677.00	1056.96
quindack rockien	N	191	Ni	1320	4.00	2.00	0.00	2180.00	1000 00	325.27
réit tole - eduit	~	198.1	-	130	3.00	1.50	0.71	326.10	164.05	48,15
tiandar colo - adult	-	160.1	-	0.0	2.00	1.00	0.00	270.10	135,05	63.71
blachbeily seipout	-	12.4	•	•	1.00	0.50	0.71	12.40	6.20	0.77
tileckip poecher		11.0	0	•	1.00	0.50	0.71	11.00	5.90	8.34
rax sola - juvenile	-	34.5	•	•	1.00	0.50	0.71	34.50	17.25	24.40
slender sole - juvenile	-	18.4	o	•	1.00	0.50	0.71	15.40	9.20	13.01
erromouth Boundar	•	¢	•	0	0.00	0.00	0.00	00.0	0.00	0.00
Pacific cod	•	0	0	0	0.0	0.00	0.00	0.00	0,00	0.00
Pacific temprey	•	•	•	ð	00'0	0.00	0.00	0.00	0.00	0.00
Pacific tyneod - adult	•	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00
plainfin midshipman	•	0	0	•	0.00	0.00	0.00	00'0	0.00	00.0
rattish- juvenike	•	•	o	•	0.00	0.0	0.00	00.00	0.00	0.00
spiny doglish	•	•	a	•	0.00	0.00	0.00	0.00	0,00	0.00
spinyheed sculpin	•	ò	•	•	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	4 9	1 5 4 4 6	01	7780	114 00	57 D.D	38.18	11235 KA	36 61311	

STRATUM BOM WINTER BS OTTER TRAWL

	3	-	3	2	5	7						
Common Name	Abund	Abund Blomana	Abund	Biomase	Abund	Biomass	Tat Abund	Ave Abund	St Dev	Tot Biom	Ave Blom	Si Dev
English sole - adult	101	18050	99	8170	174	34755	333	111.00	58.64	60975	20325.00	13437.72
shiner perch - adult	40	120.51	1	300	187	4660	203	67.67	103.39	5080.51	1693.50	2570.63
Pacific hate - adult	58	5960	89	1760	24	1425	130	46.00	19.08	9145	3040.33	2527.13
elender sole - adult	45	3040	21	1250	25	1965	18	30.33	12.86	6255	2085.00	901.01
Ratheed sole - adult	=	2240	17	2135	4	5610	11	25.67	14.15	5866	3326.33	1976.68
Pacific haka - juwanila	24	285	-0	60	0	0	29	9.67	12.66	345	115.00	150.25
rathen - adult	22	2420	2	380	-0	1245	28	9.67	10.79	4045	1348.33	1023.92
Dover sole - edult	~	1575	n	010	12	2575	22	7.33	4.51	5060	1686.67	838.10
biackbeity aalpout	-	16.9	•7	39.4	16	234	20	6.67	8.14	290.3	96.77	119.38
Pacific tomcod - adult	•	•	40	480	12	166	17	5.67	6.03	646	215.33	243.77
Pacific tomcod - juvanija	+	82.9	~	20.4	u)	ţ	=	3.67	1.53	144.3	48.10	31.85
blacklip poscher	•	27.9	•	20.5	61	35	0	3.33	0.58	91.4	30.47	3.94
quiliback rocklish	•*	290	-	150	4	1035	-	2.67	1.53	1475	491.67	475.72
rest solo - edult	•	a	•	375	-	345	-00	2.00	1.73	720	240.00	208.39
alandar sota - juvenito	n	4	-	9.06	-	•	ιń	1.67	1.15	53.06	17.69	20.42
ahinar parch - juvenile	0	•	0	•	÷	45	đ	1.0	1.73	45	15.00	25.98
English sole - juvenije	-	11.5	0	•	-	13.5	ł	0.67	0.58	25	6.33	7.29
ratifah- juvenile	0	٥	2	33.58	0	0	01	0.67	1.15	33.58	11.19	19.39
spiryheed sculpin	9	0	0	•	61	105	-	0.67	1.15	105	35.00	60.62
American shad	0	0	-	124.58	a	¢	-	0.33	0.58	124.58	41.53	71.93
phinin midehipmen	-	105.1	0	•	0	•	-	0.33	0.54	105.1	35.0)	60,68
rech sole - adult	0	ø	0	a	-	490	-	0.33	0.54	490	163.33	282.90
trutta prictuaback	0	0		•	-	15	-	0.33	0.58	15	5.00	8.66
TOTAL	287	34266	194	18226	521	54743	1012	537.33	167.19	105253.8	35084.61	19281.53

									Ş	STRATUM 40M 1	WINTER 86 OTTER TRAWL	TER TRAWL
1		Tren 1 406	Tan 2	2 405		4 405						
Common Name	Abund	Diamase	I	Blomes	Abund	Diomase	Tot Abund	Ave Abund	St Dev	Tet Blomas	Tet Blomas Ave Blomass	St Dav
Enolish solo - odult	17	970	67	1920	140	1490	224.00	74.67	61,86	4380.00	1460.00	475.71
Endish tole - juvenje	157	1500	6 4	590	0	0	211.00	70.33	79.76	2090.00	696.67	755.67
pile perch - adult	4	40	~	105	129	2210	140.00	46.67	71.32	2355.00	785.00	1234.51
shiner perch - juvenile	16	06	ŧ	255	94	200	91.00	30.33	12.90	545.00	181.67	84.01
rock sole - adult	13	2080	17	1480	22	1650	52.00	17.33	4.51	5210.00	1736.67	309.25
snake prickleback	•	a	•	0	98	1065	36.00	12.00	20.78	1065.00	355.00	614.88
pile perch - juvenile	o	•	-	10	90	310	27.00	9.00	14.73	320.00	106.67	176.16
specified sandday - adult	9	0	•	0	26	910	26.00	8.67	15.01	810.00	270.00	467.65
sanddab - adult	•	295	12	300	0	0	21.00	7.00	6.24	595.00	198.33	171.78
quiliback rockfish	12	260	•	50	9	0	20.00	6.67	6.11	330.00	110.00	149.33
Pacific temcod - juvenile	4	20	0	a	Ξ	100	18.00	6.00	7.21	120.00	40.00	52.92
rock sole - juvenike	¢	23.1	-	-0	•	145	15.00	5.00	4.00	173.10	57.70	76.14
Pacific terricod - edult	0	a	13	105	0	٥	13.00	4.33	7.51	105.00	35.00	60.62
Pacific surgharn southin	e	120	.	225	2	380	12.00	4.00	2.65	725.00	241.67	130.80
sculpin	0	0	~	30	ŝ	6 N	7.00	2.33	2.52	95.00	31.67	32.53
Bathaad sole - adult	ŝ	500	0	0	-	110	6.00	2.00	2.65	610.00	203.33	262.74
elinevui - debdae		95	0	٩	•	•	6.00	2.00	3.46	85.00	31.67	54.85
slender sole - adult	0	٥	-	9	0	•	6.00	2.00	3.46	40.00	13.33	23,09
whitter perch - adult	0	0	~	30		20	3.00	1.00	1.00	50.00	16.67	15.28
arrowtooth tounder	-	10.5	-	145	•	0	2,00	0.67	0.58	164.50	54.83	78.69
blackbelly ealpoint	-	7.4	-	2	•	Ģ	2.00	0.67	0.58	17.40	5.80	5.19
8	-	09	0	•	•	o	1.00	0.33	0.58	60.00	20.00	34.64
Dover solo - adult	•	0	-	80	0	•	1.00	0.33	0.58	80.00	26.67	46.19
Pacific annotab	•	0	•	•	-	0 -	1.00	0.33	0.58	15.00	5.00	8.66
rex solio - actuit	•	0	-	55	0	0	1.00	0.33	0.58	55.00	18.33	31.75
sailin sculpin	-	30	9	0	•	0	1.00	0.33	0.58	30.00	10.00	17.32
speckled senddab - juvenije	•	•	•	Ģ	-	25	1.00	0.33	0.58	25.00	8.33	14.43
TOTAL	255	6130	242	5435	447	8 8 9 5	944.00	314.67	114.78	20140.00	6720.00	1660.56

Appendix Tettle 1. confd.

STRATUM 20M WINTER B6 OTTER TRAWL

			Tran 2	502	Tran	4 205						
Common Name	Abud	Abuad Blomase	Abud	thund Bioman	Abund	_	Tei Abund	Ave Abund	St Dev	Tet Blomas	Ave Biomass	St Dev
فليقدم والمقامية	~	70	-	27	4	180	7.00	2.33	1.53	. 277.00	92,33	78.91
ernddah - keenile	ı -	13.2		d	5	09	6.00	2.00	2.65	93.20	31.07	42.89
The second se	• -	200	•		-	310	5.00	1.67	2.08	510.00	170.00	157.16
andt min - juvenije	• •	7.8	N		-	ú	5.00	1.67	0.58	20.80	6.93	1.68
standar sola - privit	• 0	a	0	0	0	610	3.00	1.00	1.73	610.00	203.33	352.18
	ا م ا	660	, .	230	•	•	3.00	1.00	1.00	990.00	296.67	335.01
Endish sola - innenile		~	a	0	-	7.2	2.00	0.67	0.58	14.20	4.73	4.10
crigan ave - powers series	• 0	. a		a	. 	~	1.00	0.33	0.58	7,00	2.33	4.04
	9 0	9	• •	0	-	50	1.00	0.33	0.50	50.00	16.67	28.87
English sole - adult	•	320	•	•	•	Ģ	1.00	0.33	0.50	320.00	106.67	184.75
TOTAL	-	1278	•	9 8	0 7	1249.2	00.44	55.11	9.0F	2792.28	C7.026	578.72

Total, evenge (CPUE) and standard deviation of abundance and biomass (g) for bottomfish species caught by other travel from the RADCAD, 135M, 100M, SOM, 40M and 20M strate in Port Gardner during Spring 1986. Species are fished in decreasing order of total abundance.

Appendix Table 2.

			·									
	3	-	119	12	3	61= J						
Common Name	Abund	Biomas	Abund	Diomana	Abunda	Biomass	Tetal Abund	Ave Abund	Stand Dev	Total Biom	Ave Blom	Stand Dev
Dower sole	'n	99 5	10	1965	8	1395	23	7.67	2.52	4245	1415.00	540,28
siender sole - adult	vo	285	m	150	ø	295	1	4.67	1.53	730	243.33	80.98
English sole - adult	~	1376	0	0	9	295	13	4.33	3.79	1670	556.67	723.88
ratifish - adult	2	380	ø	710	4	1330	:	3.67	1.53	2420	806.67	482.32
quiliback rocklish	-	150	-	335	-	295	•	1.00	0.00	780	260.00	97.34
rathsh - juvenile	~	90	-	0	0	0	en	1.00	1.00	;	14.67	18.18
blacktip poncher	0	0	-	17	0	0	-	0.33	0.58	17	5.67	9.81
sablafish	0	¢	-	500	•	٥	-	0.33	0.58	500	166.67	288.68
TOTAL	2 2	3110	2 2	9990	25	3610	• •	23.00	1.73	10408	3468.67	312.93

.

ï

											6 T C	CTDATUM 136M EDOIND 24 OTTE: VO.V		
;	PSOD	PSODA Sua 1	PBOOL	Sta 2	PSDDA	PSDDA SIA 3	Tran	Tran 4 1455						ICH INAWL
Common Name	Abund	in -	Į	Biometa	Abund	Diomase Abun		lionase	for Abund.	Blomss Tot Abund Ave Abund	Nen Jen	St Dev Tet Biomans Ave I	Ave Biomese	VeO 15
elender sole - actua	9	500	a	4.80	~	355	-	4	•					
and a start					• •	2	- 1	2	2	0.70	E0.4	1245	311.25	229.51
inte - chunzi	-		N	0011	•	•	•	1610	=	2.75	95.6	2025	741 24	76.4 85
Pacific hake - adult	2	99	-	405	0	Q	•	1760		1 76				
Create and		250	<	<			•		•				000.20	
	- •		•	3	-	022	0	•	~	0.50	0.58	470	117.5	136 23
English sole - edult	ŝ	000	•	0	¢	0	•	0	~	0 50	1 00			
rar ente : invento	9	<	•	~	•	C		•	1 1			2	0.70	10.001
	• •	•	-	•	-	N	•	•	N	0.50	0.58	•	2.25	3.30
Discreeny solpour	•	9	-	•	¢	•	o	ð	-	0.25	0.50	ď	•	
celled selecut	0	9	c	c	c	c	-	¢	. •			3	4	
		•	, ,					4	-	c7.0	0.00	N	0.5	1.00
	>	5	-	2	0	-	0	0	-	0.25	0.50	2 A A	35 16	17 60
1014	•	1475	**	2095	•	477		3382	4					
					ı	1	,		•				CZ'J C . I	1215.54

,

STRATUM 100M SPRING # OTTER TRAWL

			l	1106						
Common Name	Ahurd		Nur	Blomase	Total Abund	Ave Abund	St Dev	Tot Biomes Ave Blomes	Ave Blomes	Si Dev
Endish ade - adult	61	10870	-	150	62.00	31.00	42.43	11020.00	5510.00	7580,18
ratiish - adult	20	145	2	50	22.00	11.00	12.73	195.00	97.50	67.18
triander adie - adult	15	020	~	55	17.00	a. 50	9.19	885.00	442.50	548.01
ratish - kwanila	+	220	0	•	14.00	7.00	9,90	220.00	110.00	155.56
Dover sole	N	6 55	0	1120	4, Q	2.00	0.00	1775.00	847.50	328.80
Pacific hala - adult		3	~	210	3.00	1.50	0.71	295.00	147.50	68.39
fisherd role	- 01	450	•	0	2.00	1.00	1.41	450.00	225.00	318.20
ree: sole - actuals	0	210	•	•	2.00	1.00	1.41	210.00	105.00	148.49
blackbely askout	• ==	-	0	0	1.00	0.50	0.71	11.00	5.50	7.78
Pacific tomood - adult	-	140	•	0	1.00	0.50	0.71	140.00	70.00	99.99
auitheck mokieh	-	605	0	•	1.00	0.50	0.71	605.00	302.50	427.80
Dellig solomut	• •	0	•	0	0.00	0.00	0.00	0.00	0.00	0.00
ainania - ana sa	•	a	0	0	0,00	0.00	0.00	0.00	0.00	0.00
TOTAL	120	14221	•	1 3 8 5	129.00	44.50	78.49	15806.00	7903.00	

	CAD	-	3	CAD 2	ŝ	40						
Common Name	Abund		Abund	Biomas	Abund	Biomaas	Tot Abund	Ave 'Abund	St Dev	Tol Biom	Ave Blom	Si Dev
⁵ nnlish sola - adult	20	4470	96	6620	35	7090	6	30.33	8.96	18180	6060.00	1396.89
tionder sole - adult) ut	235		1020	00	1490	51	17.00	12.53	2745	915.00	634,05
Viaciticative and must		00	1	230	21	455	42	14.00	7.55	775	258.33	104 14
Pacific hala - adult	• •	420	1	360	-0	390	20	6.67	2.31	1170	390.00	30.00
Intract sola	G	a	-	650	13	1685	17	5.67	6.66	2345	781.67	855.14
tar sola - artuit	•		• •	335	+	790	16	5.33	7.57	1125	375.00	396.52
Machine machine		40	1 47	27	-	50	13	4.33	2.31	117	39.00	11.53
allish . Ashab) et	170	•	435		295	:	3.67	0.58	008	300.00	132.57
		e	đ	a	a	1040	a	3.00	5.20	1040	346.67	600,44
dender sols - fruenile			0	2	- 47	a	νħ	1.67	1.53	91	6.33	5.51
Pacific Internet - adult	. 9			25	-	94	~	0.67	0.58	65	21.67	20.21
Meines midchicken	• -	20		5	a	9	N	0.67	0.58	95	31.67	35.47
suithert actified	• •	4	• •	•	-	510		0.33	0.50	510	170.00	294.45
at a start of the second s	•			-	0	0	-	0.33	0.58	-	0.33	0.58
	•	110	• •	q	0	Þ	-	0.33	0.58	110	36.67	63.51
a bit	• •			g	-	430	-	0.33	0.58	430	143.33	248.26
same softiahach	• •	• •		d	•	•	-	0.33	0.58		3.00	5.20
LOTAL		5405		1747	147	14284	2 8 4	94.47	52.00	29636	\$878.67	4341.00

STRATUM 40M SPRING 46 OTTER TRAWL

		Į	Tran 2	50ŧ	Į	20¥ 1						
Common Name	Abund Planes		Y	hund Biomase	Abund	Abund Blogness	Tot Abund	Ave Abund	St Dev	Tot Biomese	Ave Blomass	St Dev
rock sole - edult	-	145	vî	600	Ξ	830	17.00	5.67	5.03	1575.00	525.00	348,60
English sela - suluti	N	455	10	335	=	1420	16.00	5.33	66.4	2210.00	736.67	594.62
Dover sole	12	125	0	0	•	Ģ	12.00	4.00	6.03	125.00	41.67	72.17
English sola - juvenila	0	0	0	•	-	08	8.00	2.67	4.62	90.00	30.00	51.96
sanddab - adult	7	50	0	•	4	120	6.00	2.00	2.00	-170.00	56.67	60.28
quilibrack rockfieh	0	ò	0	0	un.	200	5.00	1.67	2.69	200.00	66.67	115.47
shiner perch - edult	0	•	0	0	ŝ	9	5.00	1.67	2.60	40.00	13.33	23.09
blackip poacher	0	•	~	15	•	•	2.00	0.67	1.15	15.00	5.00	8.66
northern sculpin	0	0	-	a	-	~	2.00	0.67	0.58	11.00	3.67	4.73
rock eole - juvenije	a	٥	0	0	~	15	2.00	0.67	1.15	15.00	5.00	8,66
plaintin midshipman	•	0	-	27	•	•	1.00	0.33	0.58	27.00	9.00	15.59
cand sole	-	125	0	0	•	•	1.00	0.33	0.58	125.00	41.67	72.17
elim sculpin	0	٩	0	0	-	-	1,00	0.33	0.56	1.00	0.33	0,58
TOTAL	•	000	12		ţ	2718	78.00	24.00	10.29	4644.00	1534.67	1025.70

STRATUM 20M SPRING 86 OTTER TRAWL

									3 .			
	Ĩ	1 2 26	Tran 2	1 205	Tran 4	1 205						
Common Name	Abund Riem	lender		bind Blomass	Abund	Abund Blomas	Tot Abund	Ave Abund	St Dev	Tot Biomase Ave Biomase	Ave Blomass	Si Dev
Subday - Addition	•	•	ę	15	-	15	4.00	1.33	1.53	30.00	10.00	8.66
emodela - juvenile	-	-	•	٥	Ň	ψ	3.00	1.00	1.00	6.00	2.00	2.65
rock solo - juvenile	•	•	0	•	N	ut)	2.00	0.67	1.15	5.00	1.67	2.89
rock sole - edult	•	•		300	0	o	1.00	0.33	0.58	300.00	100.00	173.21
aund sole	•	•	-	12	0	•	1.00	0.33	0.58	12.00	4.00	6.93
TOTAL	- .	-	•	327	u)	5	11.00	3.67	2.31	353.00	117.67	161.60

Total, average (CPUE) and standard deviation of abundance and biomase (g) for bottomitich spacies caught by ottat train from the RADCAD. 13544, 10094, 8094, and and 2004 anta in Port Gardner during Summer 1986. Spacies are teled in decreasing order of total abundance. Appendix Table 3.

		-						STR	ATUM RAC	DCAD SUM	HER RE OT	ER TRAWL
	3	-	3	. 2	3							
Common Numo	A		Ì	limit.	Į		Tel Abind	Ave Abund		Tel Blue	Are Bloss	20 O
English sols - schut	26 .	0728	0	308	•	428.5	37	12.33	17.04	7481.5	2487.17	3674.03
ratiah - hvenie	27	477.6	-	54.5	-	21	31	10.33	14.47	655	154.33	254,44
Dover sole - adult	•	1415	=	2365.5	•	2011	20	6.67	4.04	5781.5	1927.17	475.82
stender sole - adult	•	129	~	106	-	67		2.00	1.00	292	67.33	36.77
raithsh - achuit	-	1265	0	•	•	•	4	1.33	2.31	1265	410.33	724.57
Pacific Trate - actual	-	180.6	0	0	-	316.5	~	0.67	0.58	837	164.33	159.72
black export	•	•		28	•	•	-	0.00	0.58	28	0.00	16.17
Dover sole - juvente	-	•	•	•	•	0		6.33	0.54	•	2.00	3.48
TOTAL	11	10102	•	2859	12	2834	182	34.00	32.23	15474	\$292.00	4243.53

Appendia Table 3. contd.

														STR	TRATUM 1	I 135M SUMMER 86 OTTER TRAWI	ER BE OTTE	I TRAWL
		Tra 4 1456	*		F	Intion H	PSDDA	Sta 1	PSODA		PSODA	1 540 3						
Common Name	Į		Į		ļ	limer	l	Riem zes	M	Biomacs	ł	_	I and I		e Dev	Tet Biom	Ave Blom	St Dev
Dover sola - achili	-	1583	•	1955	-	484.5	~	472.5	ŝ	1184.5	۵.	1772.5	26.00	4.33	1.37	7442.00	-	639.65
Enclimit sola - advil	0	0	i¢	1640	÷	1050	+	1000	m	626	N	362.5	19.00	3.17	1.94	4668.50	777.75	557.09
the state when a state	-	186	(1	82.5	•	•	•	0	N	112	•	212	11.00	1.83	2.23	602.50		69.60
antish - soluti	-	3970	n	1066	-	420	-	237	•	•	N	712.5	9.00	1.33	1.03	6394.50	-	1469.64
Pacific halo - actual	-		•	711	•	•	•	•	0	0	0	0	4.00	0.67	1.21	002.00		284.84
outilitach metilish	•	a	-	270	-	360.5	-	363.5	0	•	-	253.5	4.00	0.87	0.52	1267.50		171.13
third advant	-		0	•	•	•	•	•	•	¢	9	a	3.00	0.50	1.22	86.00		26,94
Interaction operations	•	¢	•	•	q	0	N	34.5	•	0	-	27.5	3.00	0.50	0.64	62.00		16.16
Dever sole - housing	-	•	0	¢	9	•	-	ŝ	•	•	-	ø	3.00	0.50	0.55	14.00		2.58
Machine seacher	•	•	-	f N	-	120	•	9	•	•	•	•	2.00	0.33	0.52	143.00		48.00
Nucleative advaut	a	•	-	:	•	•	0	•	0	٥	•	•	1,00	0.17	0.41	19.00		7.76
burnes state	ð	•	•	•		1600	0	•	0	¢	•	•	1,00	0.17	6.41	1600.00		653.20
Parolite cont	a	•	•	•	-	1600	0	•	•	•	•	Ŷ	1.00	0.17	0.41	1500.00		612.37
all and a state	-	13	•	•	•	•	•	0	0	•	•	۰	1.00	0.17	0.41	13.00		5.31
attender aufe - henride	0	a	0	¢	0	¢	0	0	-		•	•	1.00	0.17	0.41	6.00		2 45
alternation - financial		•	•	Þ	•	•	•	•	0	٥	•	•	0.00	0.00	0.00	0.00		0000
TOTAL	7		2 2	5665.5	-	5545	11	2221	:	1\$28	-	3346	88.00	14.67	1.46	24628.00	•	1838.50

			li an	1 1105						
Centrol Name	Į	į	Į	Pienes I	Tel Aund	Are Abund	2 2 2 2	Tot Biom	Are Bleen	Br Dev
tothen a chail a soluti	28	6476.5	4	478	32.00	16.00	16.87	6950.50	3475.25	4242.00
spiny deglish	-	707	=	2115	10.00	9.50	12.02	2822.00	1411.00	995.61
Mah - Iuvenije	-	201	-	Ξ	15.00	7.50	9.19	202.00	148.00	190.92
Meh - adult	•	1941.5	N	622	10.00	5.00	4.24	2463.60	1231.75	1003.74
icitic haite - actual	•	951.6	-	641	6.00	2.50	2.12	1094.50	647.25	571.70
over sole - achit	-	582	•	163	4.00	2.00	1.41	745.00	372.50	296.28
schilln poacher	N	20.5	0	0	2.00	1.00	1.41	24.50	14.25	20.15
Miback recklich	-	104.5	-	421	2.00	1.00	0.00	525.50	262.76	223.80
ender ecte - edut	N	115	•	•	2.00	1.00	1.41	115.00	57.50	50.02
iner perch - juvenile	-	10.6	0	0	1.00	0.60	0.71	10.50	5.25	7.42
ander sole - kvenile	-	4.A	9	•	1.00	0.60	0.71	6.20	3.10	4.38
TOTAL	1	11203	0	3850	01.00	44.50	23.33	15052.20	7526.60	5119.50

•

Appendir Table 3. confid.

	3	10	3	20	3	2 O 1		1			ER 86 OTT	ER TRAWL
	Abund	Distant	Į	-	T	Blomas	Tet Abund	Ave Abund	90 Dev	Tot Binn	An Blan	2
Forthely and a state			1									
	n N	1.1000		62 63 .6	-	7034		74 47				
Plicing have - adult	-	1200	4	2 4 4 C							61.1.133	1601.34
Markhalle astrono	•		• !		*		22	7.33	2.08	2641	AR0 22	90 CE6
Sandar Summer	n	19.0	0	804	4	141.5	24	f a 7	-			5.25
Standar sola - solut	4	11.7	ħ	5 4 4 S							223.00	160.59
callet . adult	•		•		•	0.0/1	-	5.00	8.8	944	314 87	21 16
	•		•	1305	~	472	-	1 3 3 2				
utudico Austr	~	1702.6	e	200	-					7019	19.111	510.91
finitional action	<	•	•	}	- 1		-	10.0	00	3277.5	1092.50	587.57
and have southing	•		3	•		194	~	2.33	4.0.4	1194	30.00	
	N		-	120	~	100	ų	1.67	0 5.0			
erueani - unuru	0	•	-	14.5	Ŧ	a a	4					413.04
Dever sole - adult	ą	e	-		• •		D (2.D	82.5	27.50	35.82
blacktic overher	•	,	- (412.5	N	0.67	0.56	538.5	170.50	204.75
TOTAL	- ;		Þ	•	0	0	-	0.33	0.54	7.5	2 60	
	7		-	9289	•	11426	184	61.33		1005	ACAS CO	

.

	Į	Į		2 1 2 2		1 405						
Common Name			Į	Ciones.	Į	Biomers	Tet Abund	Are Abund		Tel Blommes	fet Blomese Ave Riomase	NG 75
cific cod	•	8718	۰	•	•	0	00.68	29.67	61.38	3719 00	13 0101	C1 C216
glieh acte - adult	4 B 1	1316.6	22	1870.5	•	•	00.75	12.30	11.24	3104.00	10.42 0.0	060 67
Pacific temcod - adult	ð	ą	:	659	•	¢	16.00	5.33	9.24	00.000	277 87	
th sole - adult	•	239	-	606.5	•	•	11.00	3.67	3.21	845.50	281.83	305 51
try doglich	~	043	+	7825	•	•	6.00	2.00	2.00	0206.00	2736 00	1244.02
solic heating	ø	319.5	•	•	•	¢	6.00	1.67	2.80	310.50	106.50	184.46
s acte -adult	•	•	•	174.5	ø	•	3.00	1.00	57.1	174.50	58.17	100.75
wer sole - adult	•	•	-	50	-	67.5	2.00	0.67	0.50	117,50	30,17	35.03
skritin midishipman	-	54.5	-	140.6	0	•	2.00	0.67	0.55	203.00	67.67	75.12
dispects rocklish	~	418	•	0	0	0	2.00	0.67	1.15	416.00	136.67	24010
vrder eole - adult	•	•	~	24.5	•	•	2.00	0.67	1.15	24.50	517	14.15
schoolly enipow	•	•	-	~	0	•	1.00	0.33	0,58	7.00	2.33	4.04
thered sole	•	•	-	8.5	•	•	1.00	0.33	0.58	6.50	2.17	3.75
the second s	-	:	•	•	•	٩	1.00	66.0	0.58	33.00	11,00	19.05
lender sole - juvenije	-	٠	•	Ģ	•	ø	9 0'1	0.33	0.58	5.00	1.67	2.69
TOTAL	122	1.4444	18	11246	-		170.00	59.67		11211.04	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	544743

STRATUM 201 SUMMER & OTTER TRAWL

....

					Í							
:				5 20 2		1 208						
Control Name			ļ	line a	Į	Blemen	Tet Abund	Ave Abund	2	Tot Biomaaa Ave Biomaae	Ave Blamase	10 14
English sole - sout		249.5	~	248.6	•	439.5	9.00	00.0	2.65	936,60	312.63	109.70
ethiner parch - juvenile	•	•	~	\$1.5 1	0	0	7.00	2.33	4.04	61.60	20.50	36.51
sundah - aduk	•	•	-	22	04	10	3.00	1.00	1.00	63.00	17.87	15.95
eanddeb - juvenije	¢	¢	0	•	•	10.5	3.00	1.00	1.73	10.50	3.50	0.06
Pacific herring	•	¢	-	28.5	0	•	1.00	0.33	0.58	20.50	9.60	16.45
Pacific-stagnom aculpin		236	0	•	•	•	1.00	0.33	0.58	236.00	70.67	136 25
rack ania - adult	•	•	-	23.5	a	٩	1.00	0.33	0.58	23.60	7,83	13 57
rock sole - juvenile	o	•	-	-	0	•	1.00	0.33	0.50	13.00	1.33	7.51
starty Rounder	•	9	-	259.5	0	•	1.00	tt:0	0.50	259.60	86.50	149.82
TOTAL		445.5	:	667.5	Ξ	Ŧ	27.00		6.24	1424.00	541.33	100.63

ī.

Total, average (CPUE) and standard deviation of abundance and biomass (p) for bolionfilsh species caught by other trand from the RADCAD, 135M, 100M, 60M, ethic active at Port Gardner during Autumn 196M. Species are litted in decreasing order of total abundance.

Appendix Table 4.

	đ	-	ļ	~	3	•		81A E						
Commen Name	Į		Į		Į		And		Tet Abund	Ave Abund	92 Der	Tel Bioman	Tel Biomase Ave Bismass	Se Dev
elender sole - adult	-	8 26	•	466	-	425	9	240	29	7.25	96.0	999 T	413 75	124.70
English sels - acht	•	670	•	1346	•	•	e	660	-	3.25	2.50	2675	666.75	540.13
Dover eale	•	•	+	070	-	415	~	220	~	1.75	1.71	1605	401.25	415.34
ruttah - adult	-	105	-	000	-	8 50	0	•	ę	0.75	0.50	1835	458.75	471.21
the source of the second se	-	430	•	•	-	984		100	-11	0.75	0.50	1295	323.75	217.46
Mechilin poecher	-	;	-	20	•	0	٩	•	~	0.6	0.58	34	5.4	10.12
Pacific hale - actuit	-	090	-	316	•	0	•	0	â	0.5	0.58	1176	293.75	405.66
quilibach nochlich	-	940	0	•	-	385	a	0	¢	0.5	0.58	725	101.25	210.09
ratitah - juvenila	0	•	0	•	-	14.6	-	32	م	0.¢	0.58	9.84	11.625	15.21
ran eate - adult	N	260	ø	•	•	•	•	•	ณ	0.5	1.00	250	62.5	125.00
ealt eculpin	•	٩	•	•	•	0	~	•	~	0.5	1.00	7	1.75	3.50
Pacific toncod - jumnija	0	•	¢	0	a	¢	-	3.6	-	0.25	0.60	3.6	0.875	1.75
pallid asyour	0	٩	•	•	-		0	•	-	0.25	0.50	a	2.25	4.50
red brokula	0	٥	0	•	•	•	-	2¢	-	0.25	0.60	26	6,25	12.50
aphyteed scupin	0	¢	-	70	•	•	a	•	-	0.25	0.50	2	17.5	35.00
TOTAL	-	4076	9 17	4884		2564	17	1587.5	11	17.75	3.77	11410	2852.5	1041.36

~

90

.

Appendie Table 4. con'd.

															STR	STRATUM 135M A	135M AUTUMN 06 0	IS OTTER TRAWL
	PSODA	1	Padak		Pedda	Sia 1	ų,	Sia G	3	Sta H	Ę	4 1458						
Comes Name	ļ	lion and	Į	i	ļ	Biemees	Abund	diomana 1					Tot Abund	Ave Abund	te Dev	Tol Blom	Ave Blem	SE Dev
elender, sole - adult	~	69.5	=	760	Ð	240	0	125	•	400	-	75	36	5,83	5.56	5.7621	256.25	263.51
Pacific hate - prenile	~	:	ŵ	•	~	7.6	o	•	+	266	•	•	53	3.63	3.19	291.5	48.58	106.60
English sols - adult	n	785	CN	640	•	090	•	1105	~	1730	•	•	e -	3.17	2.32	4019	669.83	578.67
patita selpout	•	•	•	•	-	22.6	=	141	•	•	¢	•	-	3.17	6.40	38.5	6.42	56.45
Pacific temcod - prenite	•	0	0	•		1.5	•	12.6	0	0	-	•	:	1.63	3.54	10.5	2.25	4,89
Cerver sole	-	0	4	1810	0	٩	~	575	-	445	0	0	•	1.33	1.51	2147	357.83	615.76
black seepout		9 0	•	21.6	•	•	•	•	64	27		0 19	~	1.17	1.17	127	21.17	27.53
radiah - adult	•	9	-	105	~	0601	•	0	•	510	-	315	•	1.17	1.17	2320	79'98C	530.17
alimeter actio - juventito	•	•	•	•	0	0	•	0	~	7.5	¢	•	•	1.17	2.66	7.5	1.25	3.06
theckin poscher	n	4	~	56	0	0	0	0	•	۰	0	•	d	0.83	1.33	7.9	13.17	20.81
quiliback racidien	-	326	0	•	0	•	•	•	•	•	•	•	-	0.17	0.41	325	54.17	132.68
aping doplish	•	0	•	•	0	0	•	ø	-	510	•	•	-	0.17	0.41	510	85.00	208.21
nichten bestehnten	Ģ	0	•	•	0	0	•	•	-	76 2	¢	0	-	0.17	0.41	76	12.67	9 60 6
TOTAL	:	1330	-	2112	21	2622	+	1858,5	n + n	911.6	-	==	•••	24.00	12.05	11401.5	1915.25	_

91

•

Appendik Table 4. confid.

2
OTTEN
3
AUTUMN
STRATUM

đ

Commen Name	Į	2 1106 Biomaco	IJ		Tet Abund	Aw About	St Dev	Tol Biomese	fol Biomese Ave Blamase	5
cadiah - juvenjie		190	~	0	10.00	5.00	4.24	260.00	130.00	70.71
Dover sole	~	575	Q	404	9.00	4.50	3.64	99.00	490.00	120.21
English sols - adult	•	816	n	9	9.00	4.50	2.12	1395.00	697.50	307.59
quilibuck recitish	n	445	*	898	7.00	3.50	0.71	1150.00	675.00	127.20
Pacific hale - adult	•	1035	(N	475	4.00	2.00	0.00	1510.00	755.00	105.00
siender sole - adult	+	185	•	•	4.00	2.00	2.83	145.00	82.50	130.01
Pacific cod	n	699	•	•	1.00	1.50	2.12	695.00	347.50	401.44
Tan table - adult	-	Ģ	14	100	3.00	1.50	0.71	100.00	50.00	70.71
timets selpost	•	÷	~	10	2.00	1.00	1.41	55.00	27.60	36,89
Pacific tencod - juvenite	•	¢	•	4	2.00	1.00	1,41	4.00	2.00	2.83
solt scupin	Ċų	6.5 2	ø	a	2.00	1.00	1.41	8.50	3.25	4.60
Asilgeb whee	~	825	•	•	2.00	1.00	14-1	825.00	412.50	503.36
timitety estrout	-	50	¢	٥	1.00	0.54	0.71	33.00	16.50	23.33
blackin poscher	•	0		13.5	1.00	0.50	0.71	13.50	6.75	9.55
Pacific hale - pronte	•	•	9	a	0.00	0.00	0.00	0.00	0.00	0.00
pallid aetpout	•	•	•	0	0.00	0.00	00.0	0.00	00,0	0.00
ratish - adult	•	0	0	•	0.0	0.00	0.00	00.0	0.00	0.00
slandar sola - juvanila	•	9	0	a	00.0	0.0	0.00	0.00	0.00	0.00
apinyheed sculpin	•	•	•	a	0.00	0.00	0.00	0.00	0.00	0.00.
TOTAL	•	4034.5	9	2277.5	59.04	20.50	11,44	7212.00	3604.08	1878.78

1	ł		
2	i	i	
	ì	l	
	ŝ		
	ŝ		ļ
	1		
	•		
	i	i	
1	•		
	ł		i
	J		
ľ			
2			
	ŝ		
1	l		
	ł		
	ł	l	i
	1	l	
	i		
	i		
	÷	i	
	ľ		

į

									6	STRATUM BOM AUTUMN DS OTTER TRAW	UTUHN NO O	TTER TRAW
	3		3	202	CAD							
and Kan	Į	Abund Blomasa	Į	i	ļ	Diamass	Tet Abund	Ave Abund	90 Dev	Tet Blance	Ave Blan	<u>∧</u> 40 40
th tote - adult	00	6170	72	10000	47	10870	169	56.33	22.94	27000	9000.00	3317.33
hr acts - actuit	e	. 960	21	1080	5	1400	88	22.00	3.61	3440	1146.67	230.29
th - Arrenile	n	137.6		1080	=	240	56	16.33	16.82	1467.5	489.17	522.85
i hate - staff	a	700	16	610	-0	725	20	0.67	6.03	1935	645.00	117.58
th - advit		412.5	ø	1175	17	1510	26	60.9	7.57	3097.5	1032.50	562.46
r sois	0	•	N	370	~	245	•	1.33	1.15	616	205.00	168.22
vech recidiali	0	•	N	610	~*	545	4	1.33	1.15	1155	365.00	335.00
ad sole	0	•	-	-	-	011	-	1.00	1.00	183	64.33	67.33
their seloout	-	40.5	•	9	-	28.5	~+	0.67	0.58	69	23.00	20.80
tin poscher	•	•	N	23.5	•	9	N	0.67	1.15	23.5	CO.7	13.57
tie poster	0	•	N	38	0	•	ŝ	0.67	1.15	26	6.67	15.01
	0	•	-	2970	•	•	-	0.33	0.58	2070	990.00	1714.73
TOTAL		11142	160	12505	128	15774	362	120.67	40.34	41991.5	13007.17	5902.49

									2	STRATUM 40M AUTUMM 46 OTTER TRAWN	NUTURN 46 OT	TTER TRAWL
Common Name	1	Bist I	Tran 2 400 Abund Dia	in the second se	Į	1 486 Bismaan	Tet Abund	Ave Abund	10 10 10	Tet Blammer	Ave Blomese	Se Dev
Endish sole - adult	17	370	42	2446		1766	67 DA	6 C C C C	17 80		55 5091	
Pacific temcod - juvenile	; 0	0	2	9		145	30.00	13.00	20.01	171.50	57 17	23 44
rock sole - adult	- 40	760	• •••	265	; ua	260	13.00	4.33	1.15	1265.00	421.67	203.02
Pacific terrcod - adult	12	09	•	•	•	•	12.00	4.00	6.93	60 00	20.00	14 64
siender sole - adult	+	0	•		+	120	11.00	3.67	0.58	248.00	82.00	42.57
quilibect, recidish	•	350	2	211	-	31	9.00	3.00	2.65	493.00	164.33	165 81
plia perch - juvenile	•	00	~	21	9	•	0.00	2.67	3.06	61.00	17.00	15,39
specified sandlab - adult	C 1	63	-	10	14	69	5.00	1.67	0.50	149.00	49.67	12.34
ren sole - adult	-	76	0	¢	•	220	4.00	1.33	1.53	295.00	96 .33	111,84
northern ronquit	•	•	-	5.5	~	23.5	3.00	1.00	1.00	29.00	0.67	12.29
Pacific earddab - juvenije	-	•	~	00	•	•	3.00	1.00	1.00	38.00	12.67	15.53
rack sole - juvenile	n i	8. 67	•	•	•	0	2.00	0.87	1.15	39.00	13.00	22.52
whiter perch - adult	•	0	•	0	~	21	2.00	0.67	1.15	21.00	7.00	12.12
alim scuipia	•	0	•	•	~	4	2.60	0.87	1,15	4.50	1.50	2.60
threeponed poscher	•	•	•	•	-	ń	1.00	0.33	0.50	3.00	1.00	1.73
Cover sole	•	•	Ģ	•	-	39.5	1.00	0.33	0.50	34.50	11.17	22.01
Pacific herring	•	•	•	•	-	10 1	1.00	0.33	0.50	4.50	1.50	2.60
roughback sculpin	-	24	o	•	0	0	1.00	0.33	0.58	24.00	0.00	13.86
siender sole - juvenile	-		0	•	•	0	1.00	0.33	0.58	9 .00	3.00	5.20
TOTAL	•	1961	3	3187	:	2687	215.80	71.67	15.42	7752.80	2584.00	666.7 2

									1	RATUM 20M A	ITTIMM AS OTTED	YEO YOAM
Common Name		1 206 Dismaan]	200		1 206 Binners						- 1
											Are Nomen	St Day
shiner perch - juvenile	0	0	e	36	9	176	00 CC					
Endink ante : adas			, ,					00.7	2.5	210.00	00.07	92.60
	-	1300	•	\$10	**	320	21.00	7.00	5.29	2135.00	711 47	617 E.A
	r)	126	0	¢	0	0	3.00	1.00	67.1	125.00		
rock sole - juvenije	0	98	<									11.27
A TANAN A PARA PARA PARA PARA PARA PARA PAR			•		-	4	7.44	00.1	0.1	42.00	14.00	15.10
	-	0. M	•	•	N	;	3.00	8	0.1	71.50	23.63	24.00
Binninger Botte - Andull	¢	•	•	•	ŝ	116	2.00	0.07	1.15	115.00		
tingitati sele - juvenile	-	9.8	•	•	•	•	1.00	0.33	0.50	A 50		
quilibreck rectilish	-		0	0	đ	d	1.00		. 64			
specified sundaily - juvenia	0	a	q	đ	•	5						40. A
Stars Bauadar	•	•			- 1		2	77.2			0.0	9.81
territoria Eritar	2	•	-	414	9	ą	1.00	0.33	0.54	415.00	138.33	239.60
11 TOT	•		•			1						
			•		e N	6 9 2	58.00	19.25	1.1	3214.00	1071.67	11.314

Total, everage (CPUE) and standard deviation of abundance and biomate (g) for bottomfish species caught by ollar litem from the SADCAD and 100M sures in Port Cardner during Writer 1987. Species are listed in decrements order of total abundance. Appendix Table 5.

														RADCAL	D STRAT	RADCAD STRATUM WINTER B7 OTTER TRAWI	B7 OTTE	R TRAWL
	3	11	5 TR 5 T	2	3	~	29	9	22	-	3	Sta E						
	Abund	lineas a	Abund	Biemana	Mude	Bion nen	Munde	lienee	Abund	()iomass	Į	Biom nea	Tel Aun	Ave Abun	SE Dev	Tat Blom	Ave Black	St Dev
radiati adult	•	1930	~	2470	10	3000	1	1600	2	999	-	2200	67	9.50	2.59	11965.0	1994.17	744,44
	01	3410	•	6710	٠	3660	•	2440	-	365	=	4820	62	0.47	4.47	20435.0	3405.03	1828.60
Inte - adult	-	0.00	-	00	ę	145	•	426	-	120	-	710	÷	7.17	6.82	2120.0	363.33	258.46
	•	206	:	0.04	ø	130	~	76	•	٥	=	360	;	71.7	9 ,09	1182.0	198.67	161.48
	•	979	~	1329	*	885.5	~	420	~	. 275	æ	1100	23	3.63	1.75	4554.5	768.08	412.83
j	0	•	•	•	•	•	~	180	~	125	2	87.6	•	1.00	1.97	392.5	85.42	77.47
	•	•	•	•	•	•	~	2340	-	600	0	•	•	0.50	2.00	3160.0	524.47	963.45
	-	1005	•	9	•	•	a	•	-	280	-	440	ri	0.50	1.64	1695.0	202.50	395.90
	0	•	-	240	-	540	-	470	0	a	•	•	ñ	0.50	1.94	1250.0	208.33	248.07
	0	•	~	940	•	•	•	•	9	a		14.4	-1	0.50	1.97	54.4	9.07	16.21
	-	9 (1	-	20	0	•	-	e :-	•	0	9	•	n	0.50	1.94	48.9	7.82	11.51
	~	20	•	a	0	•	•	•		5.B	0	•	n	0.50	1.97	25.8	4.27	8.03
where policit	0	Ċ		600	•	•	0	÷	0	•	0	•	-	0.17	2.00	500.0	83.33	204.12
	-	335	•	a	•	•	•	0	•	0	•	•	-	0.17	2.00	035.0	55.83	136.76
	•	0	•	•	0	•	•	٥	•	•	-	260	-	0.17	2.00	260.0	43.33	106.14
	•	o	•	•	0	•	•	•	-	100	0	0	-	0.17	2,00	100.0	18.67	40.62
	•	•	•	•	•	•	-	12	¢	•	•	0	-	0.17	2.04	12.0	2.00	4.80
	•	0	0	0	-	7.7	•	•	•	a	•	0	-	0.17	2.00	7.7	1.28	3.14
	•	0	0	•	•	•	•	•	-	4.4	•	•	-	0.17	2.00	7.4	1.23	3.02
	9	•	•	•		2.7	•	•	•	•	0	•	-	0.17	2.00	2.7	0.45	1.10
з	ţ	44 4136	4	10829	4	1123	œ #1	9098	21	2913	5	8782	250	41.67	21.03	48115.7	8019.3	2728.3

STRAFUM 100M WUZ OTTER TRAWL

i i mi i	15618	11025	13360	2370	100	0601	Ξ	450	120	44846
Pund	70	46	4 2	90	23	~	~	-		212
fish Species	English sole - adult	atlish - adult	Pacific hale - adult	slander sole - adult	radiish - juvenide	Dover sole - ache	Pacific Lamprey	quilibach rocklish	mix sole - adult	TOTAL

Appendix Table 6.

ī

								RADC	CAD STRAT	COLL WINTE	LADCAD STRATOW WINTER 1996 BEAM TRAV	AM TRAW
	[7 7	- 75	8	12	3	SH 3						
SPECIES	Ahnd	Biomete	Nucl	Bonard	Purq	Biomana	Tat Abund	Ane Aburd	Stand Day		Total Blom Ave Blom	Stand Day
	N	355	-	640	-	160	•	2.00	1.00	1155	365.00	241.40
		5	a	a	-	ug	-	1.33	1.63	00	10.00	13.23
Profile teta) a	N	970	0	9	•	0.67	1.15	970	323.33	560.03
Party of the second sec	. 64	200	. 9	0	0	• •	Ň	0.67	1.15	200	68.67	115.47
ander solar - ad		a		75	0	0		0.33	0.58	75	25.00	43.30
Forthern works - and		470	a	0	0	•	-	0.33	0.50	470	158.67	271.35
	-	-	•	a	•	a	-	0.00	0.58	-	0.33	0.58
statette midelingen	-		- 6	-		•	-	0.33	0.58	17	5.67	9.81
TOTAL	-	1964		1685	i da		-	•		2918	\$72.667	764.47

97

.

•

-

STRATUM 135M WINTER 44 BEAM TRAWL

	ļ	1 2 100N	Ten 3	<u>Not</u>	n Si		Tim 4 14	10 TJ	87 + 5	E N	1991 9 19	1 1 1 1	n 5 145M	ġ	ŝ		N, M,	Ĩ	, 1					
	ł	d Bonnes]			2			und Blom	4	nd Glorini		Terrer	PUNA	Biomes		Nomene Tc	a Ab And	2002	v Tet Blon	Ave Blom	SD.
blackbeily selbout	•	•	•	a	•		. q		- -	- -	°	0	•	24	8	~	2	ŧ	ž	30 3.	33 8.54	111	12.33	31.21
alender sole - Ed	9	•	0	•	_	-	90 90	30	2	70	•	N	135	-	3	•	•	£	£	-	00 1.12	NA NA 0 1.00 1.12 375 4	11.47	50.44
rethet - ad	•	750		145	0		9	0	-	-	°	0	9	0	•	2	ê	£	£	- -	67 1.12	e 075	108.33	246.04
blackib poecher	0	•	0	0	0		-	~	-	0	°	-	a	0	0		4	ž	£	0 4	44 0.53	55	2.78	4.08
Devel acts - ad	•	•	•	•	0		•	•	1	2	-	-	58 8	•	0		195	ž	ź	•	44 0.51	920	102.22	227,49
elender sole - Inv	0	•	0	•	-		•	•	- -	6	-	0	•	-	a	0	•	ž	ž	0 10	33 0.50	17	98.1	3.22
Polici Neto - el	0	0	•	•	•		•	•	-	- 0	°	9	•	•	0	-	265	ź	£	-	11 0.33	1 265	29,44	88.33
TOKM.	-	760	-	145	Ċ4		*			02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	908	5	i	•	564	0	0	57 6.	33 8.35	2688	200.67	322.57
			•																					

STRATUM 100M WINTER 16 BEAM TRAWL

Appendia Table 6. confid.

SPRCES		1001	Tex.	1166			Tran 2 1		11 6 11	11 50	Tran 4 11	8	fran 5 111	-	itan 7 101	-	(ran 7 100M	i nei n	2001 2 1						
							Abund B	former Ab	bund Bio	2 20			-			2	-	<	_	A toT sam	b Ave At	. MO 05	at Blom	Ive Blam	
	~	230	-	270	•	•	9		-	ę	-	98	÷	1300	-	200 2	8 6	0	ē.	0 20	2.60	2.01	3880	369.00	377.63
and a second	• •	0	-			205	0	•		90	-	26	2		~	5 •	90	0	ë	5 24	2,40	2.37	1030	103.00	94.61
Desar pola		. 8		-	đ	q	• •	•	-	2	0	•	9 9		-	5	•	-	1	5 10	1.00	1.70	1346	134.00	276.22
Profile halfs - ad			•		đ	-	đ	250	0		-	20	•	- -	ē	9	ð	5	ά Ν	0	0.50	0.85	700	70.00	115.85
	d	0	• •		•		-		_	0	-	22	•		-	9	¢	~	=	•	0140	0.70	59	5.90	10.03
	• -	1 6		• -	d	đ	- a			~	•	•	•	0	-	0	0	•	•	4	0.40	0.52	15	1.50	3.10
and the second se	• e		• •	•		166	a		_	. 0	•	•		- -	0			-	ē	•	0.30	0.67	192	19.20	48,11
Northern Constant) e	5	• •		• 6	9	a		_	. 0	. 0	•	0	0	0					ŝ	0.20	0.63	25	2.50	7,01
	• <	; e	• •	• •	• •					9		•	0	•						2	0.20	0.42	4.13	0.41	0.01
	• •	601	• <	. 4	• •	• •				Ģ	•	0	•	•	-		。 。	•	•	4	0.20	0.42	182	18.20	38.72
	• •	•	• •	• •	• •	9			_	. 09	-	30	¢	0						2	0.20	D. 42	90	8.00	17.51
	• • •	• •	• •		• •					0	0	•	•	0				-	•	-	0.10	0.32	'n	00.00	0.95
) c		• •	• •	• •	•				0	q	•	0	0	0	- 0	•	•	•	-	0.0	0.32	e	0.30	0.95
	• •	, c				• •	• •			0		•	•	0	-	5	3	•	¢	-	0.10	0.32	08	9.00	28.46
	• •	• c	• •	• •	• •	• •		. 9		. 0		•	0	0	0	0	•	-	- 13		0.10	0.32	135	13.50	42.69
	• <	• •	• •	• e	• <	• •			. 0		-	135	0	0	•	- -	2	•	e	-	0.10	0.32	135	43.50	137.56
LOIN	•	359	•	306	1 10	360	14 983	583		600	•	177	12 2	1 506	9	45	0 2	200	878	1.6 83	9 .90	9,2	1183,13	818.31	596.28

				-																		STRATUN		WINTER	00 BEAU	TRAWL
	-		1	ž	1				Į		ş			5	3	3	-	ŝ	-							
	2 2	£		₹	Į	æ 4	2 5		₹ _	Biam	ŧ	4 moi		ŧ	Blom	۵ ع	K	ž	< E	E Blom	Tal.	A MA A	10 00 M	r Tot Blom	Ave Blom	SI Dev
adish - ed	4	70 1		~	į	•	12 31	123	5	=	0	•	000	N	270	=	60 3	2	•	ić e	5	5.0	9 5.82	6100	425,00	367.77
alianation and a - jury	•	3 15	90	•	96	2	16 1	N	0	0	Ē	36 2	~1	0	•	-	•	-	**	-	ŝ	1. A. 71	5 5.28	162	12.67	14.59
in - eine attentio		-	170	•	185		30	75	10	165	-	76 3	220	~	99	-	15 5	220	0	•		3.0	0 2.70	1270	105.63	81.50
Madetto poecher	4	10 7	87	-	98	~		~	•	•	~	•	10 7	-	~	0	0	9	-	•	25	5.00	_	180	13.33	13,58
Machinely enfour	0	0	26	•	•	•	35	75	a	•	•	0 0	•	•	2	•	0	6	-	17	22	E 1.83		170	14.17	22.46
Dover solo - nd	0				110	*			•	•	e	- -	09	-	4	2	55 1	Ξ	۔ ج	58) 8	-	1.58		1447	120.50	201.03
Endiate acts - ad	-				126	-			•	0	2	510 1	0	N	130	-	62 1	ŝ	e e	0 9	0 19	1.51		2412	201.00	204.61
pining miduluhan	0				50				-	9 7	-	120 2	8	٥	ø	~	05 2	ž	•	Ë.	5	1.51		996	80.50	91.71
chiner perch - luv	•				•				-	9	0	0 0	¢	0	•	•	0	9	•	•	12	10.1		11	6.42	15.10
ation activity	•				e				•	0	2	•	•	0	0	•	0 0	0	•	ð	. 12	10.1		72	6.00	12.10
Rex sole - ad	•				100				•	0	•	0 0	•	0	•	-	0	9	-	0	5	0.6		476	39.67	53.15
sorthern ronguil	•				25				0	o	•	0	•	0	•	•	0 0	0	0	•	40	0.51		75	6.25	15 54
fishend sole- ad	0				•				•	•	•	•	•	0	•	•	۰» ٥	š	5	0	4	0.9		460	06.90	90.16
	•				٥				•	•	a	•	•	•	•	0	а 0	0	0	0	4	ő		132	11.00	38.11
minuteso scutoin	-				•				¢	•	0	0	•	0	0	0	- 0	ŝ	- -	65	*	0.0		159	13.25	23.25
CO sola - M	•				•				•	0	0	•	0	0	0	•	0 0	0	•	0	•	0.2		425	35.42	122.69
bluebarred prickleback	•				15				•	•	•	•	•	0	•	•	0	9	9	•	CV	0		\$ -	1.25	6 .33
Pacific hales and	Q				•				0	•	0	•	•	-	5	•	-	ž	,2 0	•	2	0		140	11.67	31.07
catilitata - Jury	0				•				•	•	0	- 0	5¢	•	•	0	•	0	0	•	N	0.1		40	3.33	8.07
	0				•				•	•	•	•	•	0	•	•	0 0	9	0	•	~	0.1		4	0,42	1.00
station sculptn	•	0		0	•	•	•		•	•	o	•	•	σ	•	0	。 。	0	•	•	N	0.17	7 0.56	45	3.75	12.99
Dover sole - by	0				•				•	•	•	•	¢	a	•	9			•	•		õ		-	0.08	0.29
extract so	•				0				•	•	0	•	•	0	•	•			-	e	-	0.0		n	0.25	0.87
English sole - luv	•				0				•	•	0	•	•	•	•	0			0	•	-	0.0		8	0.67	2.01
Pacific cod	•				110				•	•	0	0	٠	0	•	0			0	0	-	0.0		110	9.17	31.75
Pacific tomcod - ad	-				•				0	•	•	0	•	0	•	<u>ہ</u>			0	0	-	0.0		15	1.25	66. 4
Pacific togead - luv	Ģ				0	-			0	•	0	0 0	•	0	•	a	0	Ģ	•	•	-	0.0		25	2.08	7.22
authors, rockflah	•				•	•			9	•	•	•	•	a	•	÷	05 0	Ģ	•	•	-	0.0		305	25.42	8.0.5
shiner search - ad					•	•			-	27	0	•	•	•	•	¢	0	Ö	•	0	-	0.08		27	2.25	7.79
	Ģ			0	•	•			0	•	0	•	9	0	•	4	0	Ģ	-	•	-	0.0		(7)	0.25	0.67
TOTAL	11 6	117 42			1251	47 8	19 68	1 299	•	368	22	751 17	1 822	=	660	21 1	701 21	2	116	9 185	100 +	0 27.6	0 16.37	14295	1191.25	741.41

Appendia Table 6. contol.

1
Ē
F
2
-
шĩ
æ
3
띪
Ĩ
5
401
퓍

ACC'SEA		SOA 1				54	True 3.4	80	Tim 4.4	SQL	Trac 5 4	50	Tran 6 A	8	Tim 7.4	8		919	ATUM 4	OM WINTER	TER 86 9E	AM TRAW	-4
	Į					J		۲ ا		< 1						omane Tol	Abund A	the Albumot		Tot Shee	Ave Right	00	
entiner perch - luv	-	99		2010	•	•	-	-0	•	12		195	-	ß	50	270	502	62.76	114.87	2862	356,60	601.22	
English sols - hrv				-	ê	200	ġ	9	+	30	•	0	0	•	26	10	100	13.25	16.54	1140	142,60	170.61	
English solo - ad	•			8129		916	•	•	-	10	•	210	:	21	•	0	90	10.43	14.83	3245	410.63	782.10	
stagtion acupin	Ž			100	•	245	0	•	•	•	~	126	19 2	10	27	526	:	10.13	9.54	6845	20.027	946.39	
blackby settant	•			120	24	0	•	•	•	•	-	2	1	105	0	0	17	9.63	12.60	415	51.66	74.73	
endite a.	21			100	2	240	-	99	-	20	~	:	-	90	-	8 5	ţ	0.00	8.85	1135	141.86	154.62	
alimatine actin - juv	~			4	-	1. E	•	3	•	0	-	Ξ	•	20	2	- 1 2	42	5.25	2.92	186.5	23.31	17.42	
white parts - Ad	•			¢		205	•	•	•	•	•	•	~	50	0	0	24	3.50	9.12	256	31,68	72.11	
aites actuality	•			ą	-	1	~	2	-	4	-	12	•	•	-	4	20	3.25	3.01	54	8.75	5.20	
Dover anto - ad	•				=	200	•	٥	•	•	~	346	0	•	•	•	24	3.00	10.4	652	01.50	129.47	
plaints mitchigan	0				o	•	•	•	0	•	•	9	17	815 2	-	-	20	2.50	5.90	686	B 5.75	215.24	
quillibrick rockflak	â				4	10	0	0	•	•	-	280	•	0	•	0	6	2.38	4.53	380	47.50	93.92	
nothern rongull	¢				~	ŝ	N	2	•	•	-		•	0C	•	•	=	1.38	1.60	110	13.75	10.85	
pås parch - ad	-				-	9	•	•	•	•	•	•	0	•	¢	0	21	1.26	2.76	308	38,63	100.48	
Pacific terrood - ad	•				a	•	•	0	•	•	•			•	•	0		1.13	3.16	135	16.88	67.74	
	9				<u>-</u>	20	•	•	•	•	~			6 5	÷	0	•	1.00	1.41	390	48.75	72.74	
rack sole - ad	4				-	12	•	0	•	•	•		0	•	•	0	•	1.00	1.60	582	70.25	157.28	
etender acte - ad	•				0	•	•	•	•	•	~			15	0	•		1.00	1.77	\$C¥	54.38	136.05	
blacking poacher	-				-	C 4	0	•	•	•	~			•	•	•	~	0.88	1.13	ñ	3.00	7.06	
Partnersd work- and	Ģ				+	335	•	0	•	•	•			5 5	•	o	~	0.68	1.46	480	61.25	116.64	
Pacific temced - Jav	•				e	25	•	•	•		•			•	•	a	5	0.63	1.10	30	3.75	8.76	
	a				•	0	+	0	•	ę	0			¢	•	0	*	0.50	1.41	80	10.00	28.28	
roughback acuipin	•				0	•	•	0	•	•	4			•	•	•	•	0.50	1.41	60	7.50	21.21	
be - etc - etc	•				•	•	•	a	-	2	•			500	•	0	•	0.50	1.07	280	35.00	72.31	
ecutate en.	•				•	2	•	•	•	•	•			•	•	ō	-	0.50	11-1	70	8.75	24.75	
	0				•	•	•	•	-	25	-			555		0		0.38	0.52	747	93.38	165.43	
version and a - Jay	Ċ				•	•	•	•	•	•	0			26	•	0	•	0.38	1,0	25	3.13	0.84	
pygmy poecher	0				•	•	•	0	•	•	•			0.5	-	1.6	~	0.25	0.4E	~	0.25	0,50	
strigton poncher	•				•	•	•	¢	0	•	•			•	•	•	~	0.25	0.7I	•	0.76	2.12	
they plotted	•				•	•	9	0	•	•	0			•	-	0.5	-	0,13	0.35	0 .5	9 0.0	0.15	
CONCERN PARAN	•				•	•	9	•	•	9	•			9	•	0	-	0.13	0.35	8	10.63	30.05	
Down and - In	•				•	•	-	~	•	0	Q			0	•	a	-	0.13	0.35	CV	0.25	0.71	
make pricitation and an	•				Ģ	•	-	9	•	ð	•			•	•	•	-	0.13	0.36	9	1.25	3.54	
TOTAL	101	1566	ŧ	2013	171	2855	9	267	2	508			-	282		299		146.13	140.48	20745	2593.13	2462.64	

ole Table & confd.

10.53	Tran	205	Ĩ	5 200		3 205	Tian 4	202		SOS		20N	Time 7	20N						
		Ciarantes -	Į	j	And	Biomese	New	Blommer	Pure	Biomese		Ölomas	P	Blomen	Tat Abund	Vie Abunc	200	Tot Blom	Are Bloth	8 0
) male - law	~	•		826	•	25	=	45	(1)	2	0	•	•	0	32	4.57	4.01	321	45.84	94.9
volar actia - krv	~	•	•	-	-	1.6	a	2.5	0	•	•	-	12	20	28	4.1.4	4.30	9 7	8.57	7.26
That wolfes	9	•	-	\$2	٥	•	•	¢	91	135	q	•	9	a	23	3.29	6.18	160	22.00	50.3
Though the second se	•	¢	Ξ		•	•	0	•	o	٥	•	٥	0	•	=	2.00	5.20	80	11.43	30.24
via - elos della	0	•	0	0	•	•	0	•	0	•	•	50	-	15	12	1.71	3.15	65	9.29	16.3
in additional	Q	•	•	0	•	•	0	•	œ	20	0	٥	•	•	•	1.20	9.40	20	2.86	7.50
	•	•	•	•	-	-	0	•	e	•	¢1	~	N	9.0	•	1.14	1.2.1	16.8	2.28	2.91
	9	•	•	•	a	¢	0	¢	o	0	•	•	-	-	÷	0.71	1.50	17	2.43	00.0
cited sundate - ad	9	•	•	¢	•	•	ø	120	¢	0	•	0	•	•	÷0	0.71	1.89	120	12.14	45.3
them exclaim	0	٥	-	26	0	•	0	•	0	•	N	15	÷,	25	uß	0.71	0.85	65	9.29	12.0
	0	0	•	q	•	•	0	0	¢	•	3	6	0	•	e)	0.43	1.13		1.14	3.02
	•	٥	-	2	•	•	0	0	-	5	0	0	-	-	e	0.43	0.53	21.4	3.08	4.77
	-	215			•	•	0	0	-	205	٥	٥	ø	0	N	0.29	0.52	420	60.00	108.4
Infin midshipman	•	0	•	0	•	9	0	•	¢	0	-	~	-	1.2	ŝ	0.29	0.49	3.2	0.46	0.81
t acts - act	a	•	0	a	•	•	~	09	•	•	•	•	•	٥	~	0.29	0.76	60	0.57	22.6
Mathematic association	•	٥	-	1.5	0	•	0	•	•	•	0	•	-	2.75	N	0.29	0,49	4.25	0.61	1.10
ba - elos b	0	٥	0	a	9	¢	a	0	•	ð	~	165	•	٥	~	0.29	0.76	165	23.57	62.3
	•	•	•	0	0	•	0	ð	¢4	9	0	•	•	0	~	0.20	0.76	5 0	12.14	32.1
chied canddab - her	0	0	•	•	a	•	N	34.5	•	•	0	•	•	•	•	0.29	0.76	34.5	4.93	13.0
	ø	•	-	0.76	•	•	0	0	0	0	0	۵.	0	•	-	0.14	0.38	0.75	0.1	0.26
	c	0	•	•	0	•	•	0	-	165	•	•	•	0	-	0.14	0.38	165	23.57	62.3
	•	0	•	•	•	•	•	•	•	•	-	e	•	٥	-	0.14	0.38	e	0.43	1.1
at section	9	0	a	•	9	•	0	a	-	e	0	•	0	o	-	0.14	0.30	•	0.43	1.13
these manual	•	0	•	0	¢	a	•	0	-	9	0	9		•	-	0.14	0.38	00	4.29	0.1
the party - Ly	•	•	a	•	•	•	•	٥	•	đ	-	-11	•	•	-	0.14	0.31	e	0.43	1 13
		200	4	143 25		20.5	53	262	7	E.7.1	24	277	24	70.15		24.00	12.30	1015.0	273 70	211.5

Appendix Table 8. confid.

Appendix Table 7.

٠

m-CPLE) and standard deviation of abundance and biomask (g) for bottom fielt species caught by beam trave from the M and 20M strate in Port Genther during Spring 1998. Species are listed by their common names in decreasing Total, average (catch per unit e RADCAD, 136M, 100M, 60M, 4 exter at abundance.

BFECES Aburn	-											
SPECIES Aburn teaddin poacher 0	ļ			2	đ	283						
tilecidin poecher	8 2	i	Photo Photo	and a		Blomma	Tot Abund	Ave Abund	Service Card	Total Biom	Ave Blom	SurdDev
		•	~	00	¢	•	N	0.67	1.15	30	10.00	17.32
		•	0	•	-	160	-	0.33	0.50	160	163.33	265.59
bronze sitate 0		•	N	1000	•	•	2	0.67	1.16	1000	333,33	577.35
		770	~	1045	-	125	13	66.4	3.00	1940	646.67	472.24
		54	N	36	•	•	•0	2.67	90.6	100	20.03	32.53
disordiar mode - ad		205	-	340	-10	195	17	5.67	2.08	020	273.33	73.20
diameter and a - Juy		•	•	ø	•	•	-	0.33	0.58	•	1.33	2.31
stanting southin		0	•	•	N	99	N	0.67	1.15	65	21.67	37.53
TOTAL	-	1124	21	2458	•	940		15.3333	6.03	4418	1473	857.53

Appendik Table 7. confd.

		1																	STRA	TUN 13	SH SPRU	UN 135M SPRING OF BEAM	N TRANL
	Tran 2 130N	Tran 3 130M	130M	Tour 3		Tran 4	1465	Tran 4	L NSCI	lran 6 10		IN 5 1464		PSDDA Sta 1		PSOOA Sia 2	PSDOA Sta 3	C II					
~	Sin and			Į		a pung	Tommer .		2	_		Abund Blammas		d Blommes	M	Biomete		Tomana T	of Ab Av	- M0 6 9 -	w Tai Blom J	1 Ave Blom	Si Dev
alundar solo - ad		~		-		-	2	ณ	156	-		•		011	•	1 0	-	60	5	2.00 1.50		130.00	129.01
pat - definer		¢		•	•	•	3 400	e	1550	÷	1075 0	•	•	•	-	240	-	190	-		7 4055	460.58	674.06
Nichin partner		-		•		•	•	•	0	•	~ •	•	a	•	~	00	•	¢	е е	17.0 25.		5.69	11.82
Develope - ad		-		•		ð	a	•	0	•	- 0	۰ د	•	•	•	•	-	230	0			43,33	87.75
		0		•		0	0	0	•	•	- 0	•	•	0	-	n	•	¢	-	-		0.31	1.00
Dover solo - Juv		0		•		0	Q	•	0	•	~	•	0	•	-	1.5	¢	0	-			0.17	0.50
ration - Jun		•		0		-	-	•	0	•	9 9	•	0	0	•	9	¢	0	-	0.11 0.33		0.33	1.00
blackip poacher		•		-		0	•	•	•	•	~	•	•	•	•	•	•	e	-	-		1.89	5.67
THE BOR - NV		•		0		0	•	0	•	•	- 0	•	-	-	•	9	¢	0	-			0.11	0.33
aphyteed scupin		•		0		0	9	•	0	•	- 0	•	•	•	-	70	•	•	-			7.76	23.33
Commentation of the local division of the lo		-		0		0	ø	0	•	•	۔ •	°	•	•	•	•	o	•	-			70.56	211.67
TOTA		wa		ø		-0	654	ŵ	1705	-	730 (•	e	Ξ	I	754.5	e	470	4		9	710.94	639.67

Inside 2 100N Tran 2 100N Tran 2 100N Tran 2 100N Tran 7 10N	Tww.2 1(64) Turn 2 100N Turn 2 103 Turn 4 103 Turn 5 1106 Turn 7 100N Turn 7 10N Turn 7	Tank 2 1(64) Tran 2 100N Tran 3 1(05) Tran 5 1(05) Tran 5 1(05) Tran 7 1(05) Tra 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STRATUM 100M SPRING DO BEAM TRAWL	1 Tei Ab Ann Ab Si Dav 20 2.90 2.54 25 2.50 3.57 25 2.50 2.48 25 2.50 2.48	100 1.03 9 0.90 2.10 3 0.30 0.67 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32 1 0.10 0.32	20 1. 0.10 0.32 45 780 135 13.80 8.07 9492
Train 2 300N Train 3 1105 Train 4 1105 Train 5 1105 <thtrain 1105<="" 5="" th=""> Train 5 1105 <tht< td=""><td>Tank 2 100k Tank 2 100k Tank 2 100k Tank 2 100k Tank 1 105 Tank 1 10</td><td>Total Tank 2 1064 Tank 2 1066 Tank 2 106 Tank 2 106 Tank 2 1064 Tank 2 1064 Tank 2 1066 Tank 2 1066 Tank 2 106 Tank 2 106<</td><td></td><td>7 100M Blom 6.0 1.2 1.5 7.0</td><td>6</td><td></td></tht<></thtrain>	Tank 2 100k Tank 2 100k Tank 2 100k Tank 2 100k Tank 1 105 Tank 1 10	Total Tank 2 1064 Tank 2 1066 Tank 2 106 Tank 2 106 Tank 2 1064 Tank 2 1064 Tank 2 1066 Tank 2 1066 Tank 2 106 Tank 2 106<		7 100M Blom 6.0 1.2 1.5 7.0	6	
Tran 2 100N Tran 3 110S Tran 4 110S Tran 6 145 1 - 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time 2 110M Time 2 100N Time 2 10N	Town Town <th< td=""><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>-00-00000</td><td></td></th<>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-00-00000	
Tran 2 300N Tran 3 10S Fran 2 300N Tran 3 10S 5 145 1 45 2 15 1 1 2 15 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1000 1000 1000 2 26 5 145 7 200 2 26 5 145 7 200 12 1640 1 216 1 210 12 1640 1 216 1 210 12 1640 1 216 1 210 12 265 0 0 4 200 13 200 0 4 200 1 14 20 0 0 1 216 12 265 0 0 0 0 14 20 0 0 1 216 15 0 0 0 0 0 15 0 0 0 0 0 15 0 0 0 0 0 23 1655 1 1552 953.5	Total Tax Total Tax Total Total <thtotal< th=""> <thtotal< th=""> <thtotal< td=""><td></td><td>4 1105 Bloom Ab 0 80 1 870 0 870 0</td><td></td><td>-</td></thtotal<></thtotal<></thtotal<>		4 1105 Bloom Ab 0 80 1 870 0 870 0		-
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		Time 210M Time 210M Rom Ab Bion Ab Bion 1773 0 0 12 56.40 173 0 0 12 56.40 1456 0 0 12 56.40 100 0 0 12 56.40 110 0 0 12 56.40 110 0 0 0 12 110 0 0 0 12 110 0 0 0 12 110 0 0 0 12 110 0 0 0 12 110 0 0 0 12 110 0 0 0 12 110 0 0 0 13 110 0 0 0 0 110 0 0 0 13 110 1 15 13 110 1 16 13		3 1165 20 210 40 40		- ,
	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	100M Time 2 1005 1773 0 1 mu 2 1005 1773 0 0 1773 0 0 1773 0 0 1773 0 0 1765 2 7 0 0 0 162 2 1750 0 0 162 2 2 150 0 0 162 2 2 150 0 0 162 2 2 150 0 0 162 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 	- - -

.

. . .

opendik Table 7. confd.

					-																		Q	STRATUM	BOM SPRING	8	BEAM TRAWL	Ň
SPECIES	5	1 808	<u>s</u>	1 BON	Ten 1	1 105	Tow 3	T SOID	104	4 605 T	Ten 5 80	Sa Trans		Ten	38	Tian 7 06		Goi	CA02	2	ŝ							
	8		2		R		2	E		Ę	A Blom	₹ 	Biom	Ş	Elon Elon		ž	, Blom	Ł	Biom >	ت و	Blom To	AN AN	0% QV 0% 0		2	_	5
bischedir saloout	0	9	•	76	0	9	-		-	9	•	•		-	20	13 51	ii Q	2	m	65 1	-	230 6	10 10					88
adhin ad	-	416	•	0	•	190	•	146	•	70	9	• •	235	13	1070	ā	•	200	4	222 1	-	9 080	14 45		·			63
and a start of the second	•	240	•	0	-		•	•	•	9	-	•	285	~	9	5	0 0	270	••	400		625 6	÷					5
biachtin poacher	•	2	- 40	5	- 04		•		N	50	•	4	<u>e</u>	0	0	÷	-	2	.1	- 6	<i>1</i>	e e						6
the state - by	N	•	0	6	-	Ń	•	•	-	*	1	18 19	20	~	õ	-	-	•	•	20	~	00	32 2.0					
Dover sub - M	-	362	0	•	¢,	70	-	120	_	15	0	¢	9	-	435	0	-	35	-	13	-	140 2	21 1.					95
railith - luv	-	2	•	•	-		Q	ð	•	0	0	-	25	0	0	- -	0 0	•	-	25 1		370 2	20 1.0					86
bluebarred pricklebar	ہ . ج	9	0	•	-	1.74	- 10	0	-	26	~	•	0	•	0	31 5	8 0	¢	0	•	P	0	15 1.	1.25 1.82	12 68.74	4 5.73	9.09	
Partie Julia - ad	0	9	-	•	0	•	•	•	•	•	0	•	a	9	•	сі сі	e v	5	4	190	P	0	- -					ŝ
olainiin midahionan	N	135	N	200	- 14	122	0	0	•	¢	•	-	9 C	n	90	2 18	9 0	•	•	0	e	0	12 1.					8
Foolinth role - Ad	-		•	•	a	0	0	0	0	•	•	0	0	2	250		6 9	700	•	0	-	335 1	0					63
Testing and a set	•	9	a	q	0	0	0	0	•	•	0	N	115	0	•	•	•	980	¢	•	P	o	0					02
Down colo - lov	-	2.5	•	q	N		a			- 10	•	0	•	0	•	•	-	1.2	0	0	-	2.3	7 0.					5
Pacific Issued - ad	•	9	•		0	0	•			•	Ē	0	•	•	•	0 0	-	ę	¢	•	P	0	5 0.					76
	. 0	a	•	•	•	•	-		-	4	•	0	a	0	0	0	•	190	-	32	ø	a	5 0.					_
alia soulain		9		•	•	•	-			Ģ	-	2	0	•	•	0	• •	0	0	ð	0	•	5 0					.∪ ≌
authors rocklich	đ	q	a	0	0	•	Ģ			0	1 10	0	•		210	9 0	•	•	9	•	0	•	20.					-
	•		-	•	0	•	-			•	。 。	0	•	0	•	е́ Г	8	a	9	•	0	0	5 0	_				4
suddistants, surged	•	9	9	•	0	0	Ģ	0	•	0	0 0	•	•	•	9	0	n	2	0	•	e	0	0 2					4
and a sector of the	•	9	9	0	a	a	0	•	-	•	0 0	đ	•	¢	•	9	•	0	0	•	0	•	-					2
and a state back	ġ		-	91	Ģ	0	0	0	•	0	0	•	•	0	a	•	a ~	0	•	•	0	0	- 0					5
and a sector	9		d	G	-		•	0	0	0	•	0	•	•	a	9 0	•	0	0	•	0	•	- -					ä
and	d		a	a	9	a		5	Q	•	•	•	•	•	0	0	•	¢	•	•	0	•	0					5
	•	9	• •		•		•	0	•	•	•	0	•	•	a	0	•	0	•	0	_	•	0					ច
	•	. 4	•		9	•	-	9	a	•	0	•	•	•	•	0	•	•	•	•	•	o	- 0					90
designed a features	•	• •	•	•	•	• •	• •	0	•		0	0	0	¢	•	9	0	0	-	0.7	•	¢	- 0					2
TOTAL	6	117	1	326	ň	008	31	400	0	305	÷		000	27	2166	14 . 45	ē 2	9 2674	37	1038 1	я 2	t a 58 3	76 31.	.60 15.	18 14187	.46 1102.	_	9

51
5 1
- C - L
æ
-
-
_
24
- 1
윍
Ξ1
-
뾞
-1
t
σı
휡
31
α I
ΔL
78 L
~ I
_i
31
Ξí
T

Tran 1 408 Tran 2 405 Tran 3 405 Tran 4 405 Tran 5 405 Tran 6 405 Word Bornas Abund Borna Abund
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} $
$\begin{bmatrix} \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Lite 1 40 1 40 1 40 1 40 1
1 35 0
Juli 0
1 1.2 0
1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.73 1.5 0 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7 0.7 1.1 0.7 0.7
2 35 0 0 1 0 0 0
1 10 1 4.2 0 0 0 0 0
0 0 0 0 0 7 45

STRATUM 20M SPRING 05 BEAM TRAWL Ave Blom 79.34 6.29 7.57 61.13 5.14 1.79 0.49 37.14 102.86 13.29 2.50 8.50 Tol Blom 555.4 20 12.5 2.5 22 ŝ, St Dev 2.70 1.51 3 5 Ξ Are Abund 4.14 2.43 8 8 0.57 2 **fol Abund** 30 ~ e.v â 7 20N ۵ Pure la Tran 6 20N 99 2 2 200 0 Tran 5 20S 2000 Tian 4 205 ž Fin 3 20S Tan 206 ġ Tran 1 205 Abund Bioman ŝ

Appendix Table 7. confd.

SHEDERS

E) The section of the se

ypmy poacher inglich sole - ad Leghom eculpin nake prichleback

1 an the second ł

theck poulpin 0 ۰

108

61.43

290

0.76

1.43

2 ЮÐ

0.29 0.29 0.29

2

۰

220

0.43 260

> 0.40 0.29

0.57

3

0

5.00 58.57 0.86 572.19

005.33 410

0.38

0.14 0.14

Ξ

53

e

2

ŝ

62.43

Total, everge (calch per unb effort-CPUE) and standard deviation of abundance and biomass (g) for bottom lish species caught by beam user from the PADCAO, 1564, (00%, 60%, 40% and 20% strata in Port Gardner during Summar 1998. Species are listed by their common names in decreasing outer of abundance.

Appendix Table B.

1

.

1	8	44	3		13	12	and a	6,						
		Abund Biomasa	And A	Benera	Aund	Blomme	Abund	Biomas	Tot Abund	PLAN W	Stand Dev	Tatal Blom	Ave Blom	Sland Dev
		74.5	2	26.6	Q	0	0	a	•	1.50	1.91	100	25.00	35.12
	• •			•	-	219.5	-	204	~	0.50	0.58	423.5	105.88	122.42
	•				0	•	•	a	7	0.50	1.00	a	0.75	1.50
		, F		9	G	9	0	0	~	0.50	1.00	11	17.75	35.50
	• •	: =		9		- =	0	9	-	0.25	0.50	=	2.75	5.50
		• =	• •		• •	Ģ	•		-	0.25	0.50	=	2.75	5.50
	•	192	9		•	•	۰	•	-	0.25	0.50	192	40,00	96.00
	-	-	• •	•	•	•	0	÷	-	0.25	0.50	•	1.75	3.50
		358.5	~	25.5	•	230.5	-	284	9	4.00	4.64	818.5	204.63	137.15

nck rack N note -

MIOT

Daver sole - jur Daver sole - s

BPECKES

109

.

.

Appendia Table B. confid.

				-										·					49-	STRATUM	M 135M S	SUMPER	BEAM	TRAWL
SPECIE8		NOCI 2	Tim 3	100	le le	NOCI	t unit	1455	Tran + 1	Ng	Tran 6 165S		ran 6 145M	22 22	ON Set	PSODA	Sta 2	PSODA SI	Sea 3					
	ł	E all	2		R	ł	ŧ	0ion	ł	E C	ŧ	- Egi	1910 a	₹ _	Blem	ŧ	Blom	æ ₹	Storn To	GUD And	10 X D	Tot Blog	Ave Bram	SI Dev
Dover sole - ad	-	324	0	•	-	370	•	201.6	•	•	•	0	•	•	0	0	٥	0	-	L 0.00	10.1 0	975.5	97.55	158.45
blackin poscher	0	•	-	2	•	•	•	•	-	9.6 9	•	•	1 29	-	10	•	0	0		7 0.7	0 1.25	63.5	6.35	9.74
elender sole - ed	0	•	-	=	-	72.6	N	Ξ	0	•	-	80.5	1 55	0	•	-	99	o	0	Y 0.7	0.67	351	35.10	30.58
hode allowed	0	•	a		•	•	+	106	•	•	•	•	•	•	۰	•	•	•		•	0 1.26	105	10.50	33.20
endito e.	0	•	a	•	0	•	+	63.5	•	0	•	0	•	•	•	0	•	•		•	0 1.26	53.5	5.35	10.92
rathsh - prv			•	0	•	•	a	•	0	0	•	0	•	-	28.5	-	a	0		0.0 E	-	43.5	4.35	8.55
quitteet, rectilet			•	•	•	9	-	310	•	•	•	0	•	•	•	0	0	•	0	_	0 0.42	47.8	47.80	107.60
Ter sole - Ev	0		-	-	¢	•	9	•	•	0	-	2.5	•	•	•	•	•	•		2.0.2	_	6,5	0.65	1.42
apinyheed sculpin		•	-	57	-	1 70.6	0	•	•	0	•	0	•	•	•	•	0	•		2 0.20	0 0.42	127.5	12.75	27.07
Dover note - Jur	a	•	•	0	•	•	-	7.6	•	0	•	•	•	•	•	•	•	•	0	3	_	9 7	0.75	2.37
brance state	0	•	•	0	•	•	-	540	•	0	•	0	•	•	a	•	•	•		1.0	-	540	54.00	170.76
ration - ad	0	•	0	0	•	•	-	410	•	•	¢		•	0	e	•	•	•	0	5	0 0.32	410	11,00	129.65
TOTAL	~	183	•	9 2	•	513	20	1828	-	9.6	N	63	8	N	36.5	N	42	•	•	2.4.2	0 5.79	3161.5	316.15	563.85

100M SUMMER OF BEAM TRA

Appendits Table & confid.

																									-0	VIRATL	2 2 2	A SUMMA		MART N	ہے
SPICOLES	Ē	Z	T2 1105	8	T2 110M	3	2 1001	F 7	T3 1103	5 T4	1105	151	105	1	NO	T7 IC	N	17 16	00S	Stat		340	Į	Sa D							1
	R	Hom	₹		ء ع	ļ	۵ ۲	< 8	ă	₹ į		ł	Biom	ŧ	E B B	Ł	Blog	R	Biom	æ ₽	< Eo	98	¥ Ş	× 90	je Io	1 M.Am	60.09	v Tol Blom	Ave Blom	NeO 33	
Rutteh - ad	e	0	-0	648	•	•	**		•	•		n	838	0	0	0	0	-	165	-	9	0	0 ,	ر	-	18 1.2	31.54	1 2530.2	194.63	202,45	
elender sole - ad	•	0 1 30	-		•	0	•		•	•	0	0	•	m	8 9	~	51	•	•	-		- e	0 8	ر ر	-	\$ 0°5	2 0.91	1 186.5	14.35	21.32	
Cover sole - ad	•	•		63	•	0	•	-	0 C	•	0	0	6	¢	457	0	•	-	100	•	0	ð	-	46	3 6 5	5 Q.J	49.0 9	1227	94.30		_
Machine position	•	•	•	•	•	•	-	2.6	•	-	20.6	0	•	0	¢	0	•	•	•	-	-	•	0	3		3 0.2	14.0 6		3.50		
radiah - juv	•	•	0	0	•	•	0	-	9	•	0	0	•	-		-	=	-	102	•	0	•	•	ن	-	3 0.2.	4F.0 C		10.96		
elender sole - jun	0	•	•	•	•	•	•	- 0	0	0	0	ø	•	•		0	•	0	•	•	0	1	-	.		2 0.15			1.00		
blackfin eelpout	•	•	•	•	q	•	•	-	9	•	0	-	-	0		0	•	0	0	•	0	a 0	•	ن ر	-	1 0.0	8 0.26		1.36		
chopient 0	0	•	-	257	0	÷	•	- -	ė	•	•	•	•	•	0	0 0	0	0	•	•	0	。 。	•	ل ە ب	~	1 0.0	0.20	1 257	19.77		
nd browing	0	•	•	0	¢	o	0	0	•	-	136	•	•	•		ø	•	0	•	0	0	9	م	ب	~ F	1 0.0	0.26		10.46		
mic sole - ad	•	0	•	0	•	•	•	-	ں د	•	a	•	9	•		0	0	-	162	0	0	0 0	•	و. بر	~ #	1 0.0	0.26		12.46		
	•	•	•	•	•	•		- -	•	•	•	•	0	0		0	0	0	0	•	, o	•	-	•	-	1 0.0	0.26	_	16.0		
aphyneed sculpin 0	0	•	•	•	•	•	0	- -	0 C	•	•	•	0	-	4 6	0	•	•	•	•	ਂ 0	0 0	•	ر	í F	1 0.0	0.28	_	3.46		
ND.	•	0	•	000	•	•	2			9 ~	961	+	654	••	590	a	62	÷	780		2	•	0 0		4	13 3.3	1 2.36	_	366.75		

Appendik Table 8. confd.	and a				-																		S	IRATUA	i BOM S	STRATUM 80M SUMMER OF BEAM TRAWL	PE BEAN	TRAWL
SPECIES	Tan 1 808	808	5	Ne	Tran 2 808		509 C VE	5 Tan 4	8	Ten	Tran 5 80% Tran 6 80M	8 9 UN1	r	Tan 6 B(1 S08	Fran 7 BON		ī	3	CM22	ŝ							
	₹		2		2	j	ð	₹ Ę		?	Blom	٩ ٩	Biom	æ	E	\$ 0	Ren z	Ø Flor	\$	Elon E	ą	-	(avb A	S STAN	·		Ave Blom	Si Dev
ration - ad	-	8		96	•	2	ē -	.0	•	•	•	-	14	12 1	147	4	45 0	•	9	•	•	162.5	20 2				223.96	465.38
and a state of the	• •••	38	2	2	-		0	-	31.0	-	66	2	73	-	170	7	105 2	5.02	9	0	9	•	21	1.76			52.75	63.19
		3	0	•		-	0	-	•	0	•	0	•	-	9	10 10	3.6	8.84	-	49.6	-	36	1.01				27.64	24,69
atomic and a low	d	0	6	134	. 0	•	- -	61	10	0	•	•	0	-	-	-	11.6 1	5.5	0	•	-	4.6	-				14.42	37.84
biuebarrad, pricklabu	-	3.6	-	9.9	0		-		-	-	0.5	•	0	-	4.5	é s	6 .5 C	•	•	•	•	0	12				4.67	5.14
blactbelly select	0	0	- 11	137		•	-	2	•	•	•	•	0	9	•	•	•	•	•	•	~	614	-				56.08	149.46
blacker poteter	•	0	0	0	-			•	۵ -	0	•	•	•	-	14.5	•	35 6	•	0	•	-	=	11 6				6.21	10.42
Endinh nois - ad	•	•	0	0	•			•	•	•	•	•	•	4	71.5	0	0	•	0	9	~	321.5	3				91.08	233.36
	e		G	g	-				68.5	0	•	o	•	2	58.5	•	о 0	•	•	•	-	136	ງ ຄ				48.00	87.92
Pacific hala - ad	• •			181					0	9	0	0	9	0	0	0	•	1116	•	¢	N	330.5	ŝ				52.96	101.70
			. a						•	•	•	•	•	•	0	•	•	•	0	•	•	0	2				0.63	2.17
		• •					-	0	0	•	0	0	•	•	9			•	0	•	•	0	ں ہ	0.17	0.39	60	6.00	11.75
	a	0	•						N	0	0	•				•	•		0	۰	-	4	2		_		0.50	1.24
monthern rended			0						•	-	Ŧ	•							•	¢	•	•	-		_		0.92	3.16
Partic homend - ad			- 0						0	0	0	0		•					•	•	¢	0	-		_		2.75	. 53- 0
and the state	9		•						•	•	•	•							-	9 9	¢	•	-		_		5.42	10.76
	•	. a	•						Ĩ	•	•	ø							•	•	•	0	-		-		11.92	282.4
		•	-						9.1	9	•	9	0	•	•	•	0		•	•	0	0	-	0.00	_		0.13	0.43
	q		-						0	-	4.5	•	0	•	•	•	0	•	•	0	•	0	-		_		0.30	1.30
		2		14	15 4		11 204	_	281	+	2	e	147	28 2	1010	E		1 231	•	115	:	1579	1	_	_		605.29	037.72
																			•									

.

.

.

.

,

STRATUM 40M SUMMER AS BEAM TRAWL

Appendix Table & confd.

													-14			ľ				
COLORIDA .	Train 1	108	Ton 2		Tran 3 405	3	Tran 4 4	8	Tran 5 4	50		Ş	•	Ş						
			Annual Reserves		there are	Vommer A	And Bi	A Service	bund B	Volume A	A Brud			America II	1 punder	he Abund	№0 8	Tot Biom	Ave Birm	るつけ
and the state of t		-	:		-	-	6	3.5	-44	a				20.5	08	11.43	14.65	219	31.29	31.57
			: <		• -		. 9	- -	. 4			•	10	372	17	2.43	3.64	594.5	84.93	133.76
anticati anti- anti-	• •				- c	}	• •			-	-	2.5	-0	15	12	1.71	1.60	43.5	6.21	6.59
enter ectopien	4 -	2 4			• •	. =				0	. 0	0	-	24		1.29	1.69	¢.4	6.43	67.9
		ģ			, -							•	N	0	9	1.14	1,21	00	4.29	4.97
	1 0		• •		• •	: -					-	30	5	196	-0	1.14	1.06	369	52.71	80.31
		1			• •					0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	62.5		70	•	1.00	1.15	260	40.00	59.53
						• •			• •		- 67	5,017		63,5	•	1.00	1.73	116	53.86	93.10
nengana ninag					, c	• •				100		-	a	0	~	00 1	2.65	190	27.14	71.01
quiliback rectility					• <	,		, <u>*</u>	. c	2	e ut	5				90.0	1.66	Ŧ	0.57	00.1
bluebarted prickleback		э.				•	- 4						• •		e urt	12.0	0.95	25.5	3.64	5.22
blackip poscher		0 1			• •				, c						•	0.57	E 1 - 1	61	2.71	5.31
		.			÷ •		ə (~ •		,	, c			24.5		0.57		30.5	4.36	10.67
anake prickleback		o j			- •	N 4										C 7 0	0.79	130	18.57	37,00
radish - ad											•	•			• •	0 43	61 1	18.	26.86	71.06
aptryhead sculpin	0	0							• •							9.20	0.76	2	16.71	44.22
English toto - ed	0	Ċ,	Ċ,					• ,		• .			. 5	-			940		0.43	0.73
pygwy poachar	9	.	•	9		2 4	- •	<u>.</u>	- (<u>•</u> •	.		, c	• c		9.29	0.76	. 2	C.4.1	3.70
seddriftedt gunnel	•	•	•		•		-	a (W 7	2 -			, ,			0.14	0.38) (1)	0,43	1.13
grum aculain	•		Þ (,	• •	- c		• •		. 9	• •		9.14	0.38	- 03	41.1	3.02
	• =	227	- 2	227.5	• 1	8 6.5	•	9.9 9.9	28	623.5	52 52	483.5	95	1031	188	26.06	26,69	2666	11.680	357.06
	1	1																		

.

																v	STRATUM :	20M SUMMER	ER RE BEA	M TRAWL
	In	1 205	Tan,	8		308	Ş	1 205	N.	fran 5 20S	Tran	B 20N	Trun 7	NO2						
	Abunda	Bioman			ł	Blomene .		Blommer	Pund.	Biomass	Abund		Abund	Giometer 1	of Abund	Ave Abund	No Des	Tet Biom	Ave Blom	Si Dev
the methods	-	•	~	1.3	0	0	9	•	0	a	20	217	0	0	37	5.29	10.77	276.5	39.50	00.69
red prickleback	•	•	•	•	•	0	•	¢	-	-	31		a	•	32	4.57	11.66	26.25	3.75	9.49
ulain	ø	-	•	2	-	10	-	2.5	e	22.5	0	ŵ	0	31.5	26	3.71	3.04	69.5	12.79	10.64
	-	58.6	-0	214	-	308	0	•	•	278	4	697.5	0	•	53	3.28	3.30	1554	222.00	245.85
	•	10.6	•		-	36.0	4	22.6	٥	•	•	•	0	10.6	22	3.14	3.02	1:0	17.00	16.11
2	N	t e	-	n	•	0	•	•	1	145.5	•	•	•	ø	17	2.43	5. LB	172.5	24,64	54.01
k rocklish		132	٥	•	•	0	•	•	0	Ę	•	٩	2	36	12	1.71	2.93	229	32.71	49.92
Anticipation	-	57	-	20	-	105	-	38.5	•	0	•	0	vđ	203		1.29	1.70	411.5	58.79	72.68
	-	102.6	0	0	-	11	•	•	-	29.5	•	241.5	-	51.5	a	1.20	1.25	404	62.57	86.71
	-	2	•	Ē	•	•	•	•	•	¢	-	a	-	12	•	1.29	1.60	47	6.71	0.16
	•	•	-	60	•	•	-	80	0	0	~	44.5	•	•	+	0.57	0.79	137.5	19.64	25.72
acte - Ivv	•	•	-	12	•	9	•	0	14	28	0	•	-	2	•	0.57	0.79	53	7.57	10.77
renew	0	0	•	0	4	-	•	•	•	•	•	•	•	٥	4	0.57	1.5.1	81	2.57	6.80
and	9	•	-	2.5	-	-	-	0.5	-	N	•	•	•	0	4	0.57	0.53	9	0.86	1.03
	2	76.6	0	•	•	0	-	÷	0	•	-	37.5	•	0	+	0.57	0.79	155	22.14	00.30
icts sculpin		ê	0	•	•	a	•	•	ų	0	•	•	•	•	+	0.57	1.13	52	C4.7	13.31
with the head of the		•	0	•	•	•	9	a	0	•	ø	0	n	22	4	0.57	1.13	4	5.71	6.8.3
	9	0	9	9	9	•	•	a	0	•	2	10.5	•	a	~	0.28	0.75	10.5	1.50	3.87
	9		-	23	•	•	•	0	•	•	•	•	-		N	0.29	0.49	4	7.74	13.36
	9	0	-	236	•	•	¢	¢	0	¢	•	0	•	•	-	0.14	0.36	235	33.57	88.62
a nometrus	a	a	0	0	Q	0	•	0		20	•	•	•	q	-	0.14	0.38	20	2.86	7.56
	ñ	31 516 33 564 10 496.	2	3	:	486.5	•	185	17	420.5	76	1282		410.5	230	32.66	21.20	4144.25	592.04	344.95

ş

Appendix Table & confd.

SPECIES

Total, everage (satch per unit effect-CPUE) and standard deviation of abundance and blomass (g) for bottom lish species caught by beam trans from the PADCAO, 1554, 1004, 4014 and 2014 ensus in Port Gardner during Autumn 1964. Species are leased by their common names in decreasing order of abundance.

Appendix Table 9.

• .

	146	đ	8 F	3		à	SA 2		6.43						
Ą	thurd Bhomme	h	Biomers	Abund	Giammen	Abund	Biomass	Abund	Biomas	Tet Abund	for Abund Ave Abund	Stand Dev	Total Blam	Ave Blom	Stand Dev
•	0	-	ø	-	a -	•	¢	•	•	'n	0.40	0.55	24	4.80	8.23
•	•	a	•	-	19 0	0	•	•	•	-	0.20	0.45	0.5	0,10	0.22
-	157	•	•	-	97.	0	•	-	174.5	ų	0.60	0.55	477.5	95.50	67.79
-	200	a	•	9	0	0	•	0	0	-	0.20	0.45	200	40.00	89.44
0	ð	0	•	•	•	-	-	-	0 .5	•	0.40	0.55	1.5	0.30	0.45
L	16.5	-	į	0	0	-	-0 -	•	•	n	0.60	0.55	122.5	24.50	27.46
-	13.5	•	a	•	•	a	•	-	13.5	N	0.40	0.55	27	5.40	7.39
•	0	0	0	•	•	0	•	-	72	-	0.20	0.45	72	14.40	32.20
0	•	•	0	•	•	•	•	-	0 .5	-	0.20	0.45	0.5	0.10	0.22
•	•	0		0	•	0	٥	-	245	-	0.20	0.45	245	49.00	109.57
•	0	0	•	•	0	•	•	-	0.1	-	0.20	0.45	0.1	0.02	0.04
•	740	~	-	*	165.5	~		1	506.1	e 7	9.e	2.65	1170.6	234.12	238.74

stender pole - av blacktin poache ratioth - ad roughback scuit Dover sole - ad

TOTAL

ration - juv

SPECIES

\$**}** \$**}** \$**}**

N 135M AUTUMN AF BEAM TRAW

.

																						STRATUM 135M AUTUMN	135M A	MHULD	M BEAN TRAWI	TRAW	اب
	ļ			10000	ţ			1468	Trac A	CAD & 136M	Tran 5	1655	Tran 5	Tran 5 14544	050		τ η		PSOOM	Sa2							
		n 2 130N									1		4	Rhan	8	Blom	2	mon	R	Beg	Tot Abund	I Ave Abun	副の方を	Tal Blor	1 Ave Blom		
	ł		£		2		R 4		5 <		2 <	5	2 <	-	! a	•	2	360	! a	0	9			360	36.00		_
Altheck rockflah	•	0	0	•	•	•	•	• •	•	,	,	> <	•	128			! -	4.99		57.5	-	0.60	1.03	373.9	37.39		~
tender solo - ed	•	•	-		N 1		••	•	3 .	•	• •	, c	•		• •	• •	• •	9	~	36.5	- 40	0.60		52	5.20		
Auchin sepon	a	•	-		- 1		•		- 4	• •	9 C	• •	• •	9	• •	• •	0		-	1 143.5 5	ŝ	0.50	0.85	626.5	0 2.05	158.69	~
	~	195	Ċ,		•		• •	•	•	• •	• -		Ċ	• •	-	•	9		0	٥	•	00.0		103.5	10.35		
Aachin poacher	-	53	•	•	-		9 (• •	•	,	- <	; <	• •				e		G	0	-	0,30		9.79C	36.76		*
	0 5	0	0	•			•	• •	,	•	,	, ,			• •	• •	• •				~	0.20			0.30		
	•	•	0	•				.	•	•		• c	• •		• •		•	10	Ģ		e e e	0.20		6. T	0.13		
din sculpin	•	Q	0	•	•			> <		•	• •	• •					. 0	0	-	220	-	0.10		220	22.00		
angross shake	•	•	•	•					• •	• •	• •	• •		• •	• •	• •			0	0	-	0.10		1.5	0.15		
Pacific tomcod - juv	0 2	0	-	9				> {	•	3 4	• •	• c	• •	• •			9		•	•	-	0.10		25	2.50		
adiah - Java	0	•	•	•				200	,	,	• •	• c	• •			• •	• •		¢	0		0.10		200	20.00		
aluted by	•	•	9	•						•	• •	• •	•	-	•		-		•	Ģ	-	0.10		34.1	9.41		_
	a	¢	0	•			•	•	•	• •	• •	ł	• •	G	•		-	18.0	•	0	-	0.10		10.9	1.89		
<u> </u>	•	•	•	0			3.	•	•		• <	• •	• •	•			a	•	0	0	-	0.10		2.5	0.25		
nd southin	•	•	•	•				ŝ	•	,	• c	• <	• •	G	• •	- 0	-	6. C	•	•		0.10		2.9	0.29		1
adpole sculpin strate		9	9 4			120-5	+ c	692.5	- -	•	. –	9) (d)	138	•	• •	=	869.2	÷	457.5	47	4.70		2614 7	261.47		-
	•		•)	•																						

•

.

opendis Table B. confd.

SPECUES T1 100M T2 1105 T Ministration Ab Bount Ab Bound Bound Bound Bound Ab Bound Boun			ľ					72 1120					ļ			1						
Ab Bhom relation = and 3 B Bhom reflech = juv 0 0 0 reflecht poecher 0 0 0 blacktin poecher 0 0 0 0 blacktin poecher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 11035	12 11012		T2 100N	T3 110S	1	32	3	2	3	898			3	•							
attender ools - ad 3 89 ratiteth - jow 0 0 ratiteth - ad 0 0 blackfin poecher 0 0	Roll of	ł	<		1	₹ E	Biom	200	R	Bog	₹	R EQ	Elon.	ę	Blom	2	-		さの やき	IN TOL BIOM	m Ave Blam	_
radiah - jew 0 0 radiah - ad 0 0 blackin poechar 0 0 e-an - oranod - in 0 0	2 83.5	•	•	a e	- 9	-	13.5	2 13(-	58	2	124 2	8	N	40	0	0	16 1.	33 0.8	6 631.		46.86
radiah - ad 0 0 biachth poachar 0 0 Burdin correct i bro 0 0	•	•	0	•	2 37.	0 ~	•	0 0	•	170	Ň	42	20.5	0	¢	•	0	5				48.55
blackfin poacher 0 0 Benetic serviced - key 0 0	2 140	¢	•	•	2 29	-	665	1 68.5	N 9	5 2 45 1	-	130 0	9	¢I	70		79.8	12 1.	1.00 0.85	5 1896.3	3 141.36	185.07
	1	•	0	•	•	•	•	• •	•	•	•	36 0	•	e 4	26	-	20.5	0 8				12.67
	•	•	•	•	7 25.	0 0	0	0 0	•	¢		0 0	0	o	•	•	•	~ 0.				7.30
0 0	•	•	-	•	。 。	a	0	¢ 0	~	-		0 0	0	9	٩	-	0.0	.0				0.64
alim acutain 0 0	•	0	- -	0 0	ii t	0 0	•	0 0	0	0		0	•	0	•	•	•	4				3.41
0	0 0	•	- 0	•	0 0	•	•	•	0	0		-	4.5	-	+		•	 				2.23
Dower wohe ad 0 0	•	0	0	•	1 21	•	a		-	36.5		0 0	•	0	¢		•	ö N				81.66
blackbeily seport 0 0	0 0	•	- -	•	1 56.5	0 9	•	•	•	•		•	•	9	•	•	•	10				24.97
pricideback 0 0	0 0	0	0	•	•	0	•		-	5.5		0 0	•	a	•		•	1.0				1.59
northern ronquit 0 0	0 0	0	•	0	10.	a n	•		0	•		٥ ٥	•	0	9		0	0				5.28
Pacific hate - jav 0 0	0 0	•	•	•	•	•	•		•	•		。 。	•	0	0	-	N	ő				0.58
ptaintle midshipman 0 0	1 103	0	•	•	•	o	•	•	0	¢		。 。	0	9	•	•	•	0 7				29.73
	a 0	o	0	•	0 0	0	0	•	-	2		•	•	•	e	•	•	-				4 03
tipinghead sculpin 0 0	•	0	•	•	•	0	e	•	•	•	•	•	0	-	124	•	•	-				35.80
TOTAL 3 89	2 366	•	0	•	18 72	50 19	670.5	3 196	5 15	322	10	138 4	ē	•	277	÷	03.2	76 6.		.,		248.60

Appendix Table B. confid-

.

•

																										EAN T	
	Town 1 milli	1	Ton 2 MB	200		34	12	2	Tean 6	508	T and	MAN		ALL A ADS	CADA		CAD					STR	STRATUM SOM AUTUMN 44 BEAN TRAWL				HAWL
	! {		1		1		2		į		8	E S	R		Ę			Eog.	; •	Ę	A de la	Tot Ab Am Abund	510	Tot Bhor	Tot Blom Ave Blom		20 Dev
andar kolo - juv	0		-		-	6 .6	*	•	•	:	:	10.5	đ	-	-	a	2	N	0	•	58	5.80	5.96	5 4	5.40		4.10
	-	30.7	~	43	0	•	•	0	0	260	-	34.5	•	•	a	245	-	63	-	198.5	35	3.50	4.01	903.7	90.37		104.25
namoktabim nihita	-	6.6	0	•	0	0	-	75	-	57	÷	545	•	620	•	990	e	99	~	12.5	27	2.70	2.75	1991.4			228.27
bian - mult	-	1		90	•	350	-	96	-	90	•	0	•	•	-	4	0	0	i e	131.5	12	1.20	1.32	826.1			01.1
ender sole - ad	~	64.3	ġ	•		24.5	٩	ø	N	8	-	2.0	0	¢.	-	45.6	2	6.8	¢	•		0.90	0.88	360.3	36.03		35.66
acticely espoul	•	0	•	•	•	0	•	0	•	8	-	12	•	0	0	•	0	0	0	0		0.40	0.97	88			10
lia sculpin .	•	0	0	•	•	•	¥	5.5	•	•	•	0	•	٩	•	•	•	•	0	0	4	040	1.26	5,5	80 0		24
lactify poacher	0	•		9. 0	0	٥	•	•	•	•	-	5.5	-	=	0	•	•	•	•	•	-	0.30	048	53	2.30		58
nginth acts - ad	-	128	a	•	0	•	•	0	•	•	-	181	•	•	•	•	-	120	•	•	-	00.0	0.48	407	40.7C		36
the state being	•	•	0	0	•	•	9	9	•	•	n	485	•	•	0	•	•	¢	0	•	e	0.30	56 O	405	48.50		1.37
yothy position	۰	a	0	•	•	•	0	o	•	٥	m	-	•	0	•	•	•	•	a	•	m	0.30	0.95	-	0.10		32
hebarred prickleback	¢	0	0	•	0	•	•	0	-	•	•	0	•	0	0	•	•	0	0	0	-	0.10	0.32	9 1	0.0		85
Over sole - ed	•	a		2.	•	•	•	•	•	0	o	0	•	•	•	•	•	•	0	0	-	0.10	0.32	28	2.00		9Ş
actic hate - juv	0	0	a	a	-	1.3	0	•	0	•	•	o	•	0	0	•	•	•	•	0	-	0.10	0.32	-	0.13		Ę
	0	a	•	0	•	•	•	•	•	0	•	•	•	•	-	5	•	•	0	•	-	0.10	0.32	6	1.90		
all scubin	•	0	•	•	•	0	•	•	0	•	-	-	•	9	0	•	•	•	0	0	-	0.10	0.32	-			18 ទ
diminand acutoin	0	0	-	64.5	•	0	o	•	٩	0	•	0	•	•	•	•	•	•	0	•	-	0.10	0.32	64.5			
achem sculpto	a	•	þ	•	•	•	0	•	0	•	-		•	0	0	•	0	•	•	0	-	0.10	0.32	91			80
					•														•			00.00					

.

.

STRATUM 40M AUTUMN 85 BEAM TRAWL

Appendix Teble 9. confid.

			-											1				
SPECIES SPECIES		1 403	Trun 2 408	108	Tean 3	3 405	Tran 4		Tran 5		Tran 8	Nat						
	Abund	Blogment	Abunda		Purdy	Biomase	Aburd		Abund	-	Abund	Biomese	la Abund	Are Abund	<u>80</u> 0	Tot Biom	Ave Blom	SI Dev
and a state of the second			Ċ.		01	4	•		-		22	4	40	7.50	7.79	\$3.4	9.90	4.29
			1		-	05	9		~		2	011	24	4.00	3.79	616	52.17	37.89
alating and the second			• •	a	• •	•	•		•		17	100	18	00.6	6.87	961	33,00	72.37
			• a		- 42	•			-	20.5	0	•		2.17	2.64	38.5	6.42	11.46
Denor and a set	- 0		•	46.4	•		• •	0	N	250	-	20	10	1.67	1.37	367.4	61.23	86.66
			•	4.2	. a		. 9	120	¢	0	-	200	æ	1.50	1.64	548.2	76.19	108 08
	- c	; =	G	a		0.5	-	N	ŝ	•	¢	•	-	1.17	1.94	6.3	0.85	1.30
		2			• •	22	• •	9	•	99	۰	•	¢	1.00	1.55	102	17.00	25.70
Muruhan turkun	• c	: =	, -	10.0	-		• •	• •	c1	90	-	ŧ	¢	1.00	1.10	193.9	32.32	35.54
Condition to accord a list	• c		• •	0		1	• •	• •	I N	11.6	-	•	ŵ	0.83	0.98	20	3.33	4.58
		•	• •			9	- 0	ļ	•	150	•	0	4	0.67	1.63	158	26.33	64.50
		• d	• •	• •		• •			0	0	N	•		0.50	0.04	9	00°C	4,65
	- c	• <						a	-	2150	0	•		0.50	1.22	2150	358.33	677.73
		,		2 4 F			, -	35		a	0	•	•	0.50	0.55	65.5	10.92	13.97
		.	- 6		• •	2 a			0	• • •	•	•		0.50	0.84	9	3.00	6.42
	.	, c 4	• •	• •			- 0	9	Ċ	0	•	0	-	0.17	0.41	2.5	0.42	1.02
			• •	• 6	¢		4	•	0	•	•	o	-	0.17	0.41	01	1.67	4.00
	- c	2 -	• =	• •		• •		• •	0	•	-	411	-	0.17	0.41	*::	19.00	46.54
	, ,		.	• •			G		- 0	•	•	•	-	0.17	0.41	145	24.17	59.20
	- 6	ŗ	,	• •	• •	• •		• •		165	•	•	-	0.17	0.41	155	25.83	63.28
	•		• •	• •			• •	• •	-	12.5	•	•	-	0.17	0.41	12.5	2.08	5.10
	•			•	• =				- 0	9	Ģ	•	-	0.17	0.41	11.7	1.95	4.78
			- <		• •	• •	e		-		d	•	-	0.17	0.41	16	2.67	6.53
ahiner perch - ad	• !	5	• ;				• :		5.5	3010 6	5	784	167	27.83	16.59	4715.9	765.98	1114.95
	2	3/2.0	-	2.36.1	U V		2		i		•			1				

. . .

•

		:														STRATUM	20M AUTL	<u>stratum 20m autumn 66 beam</u> trawl	H TRAW
	SPECIES		1 205		2 205	Tran	3 205	Tran	205	Tran	205	Tran 6	20N Binmark	Tot Abund	Annual and	2	Tor Riom		j J
	elender adle - luv		2	•			•	-	~	~	9.1	5	19.6	10	5.07	11.00	37.0	6.30	8.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	English sols - ad	-	071	•	147.4	•	940	4	110	~	45	0	0	21		3.02	762.4	130.40	117.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	dia scupin	•	•	•	•	2	21.8	••	4.5	•	٥	Ŧ	9.0	0	3.33	4.13	29.9	4.98	8.52
	Rughback ecupin	-	11.7	-	- :	41	36.8	2	-	2	un (0 0	0 (2	2.63	3.66	60.5	10.06	13.29
	rick acts - juv Nicchellin actions	~ <	29. I		23.7	n c	n e			• •	2 a	- ²		<u>•</u>	2.50	6.12	0 - 0 99	11.13	22.22
		> c	• •	• •	• 9	, a) a	• •	• •	• •	• •	; un	150) us	0.83	2.04	150	25.00	61.24
1 3 34.7 1	DVOEN DATCHER	• •	• •		9	• •	. a		2	-	-	•	-	ŵ	0.03	1.17	12	2.00	3.95
metric 0 2 25.5 0 0 2 25.5 0 0 1 25.5 0 0 1 25.5 0 0 1 25.5 1 25.5 1 25.5 0 0 1 25.5 25.5 25		•	•	-	754.7	•	•	•	٥	~	160	9	a	10	0.83	1.33	914.7	152.45	301.90
	vv(- debbnes beidbegs	•	•	~	25.5	Ģ	•	•	•	•	50	a	a	40	0.03	1.33	75.5	12.58	20.95
	elender sole - ad	9	•	•	o	¢	•	٥	0	ŝ	9	ĊI I	25.9	•	0.67	1.03	85.9	14.32	24.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dover sole - ad	-	56.3	•	•	0	0	•	<u>م</u>	N -	150	•	0		0.20	6.84 1	206.3	34.38	60.95
	Dover sola - jur	~	24.5	•	a (a (e j	0 (•	- 1	<u>a</u> (0 0		"			0. RD	9 C 0 C	10.63
	northern ronquil	•	•	9 (•	a .	9 V 1 V	.	• ;	• •	• •			N (- 2		2 F 2
		• •		÷ -	-	- 0	2	- 6	2 0		• 5	.	30	v (200.0	
	special targets - 40	9 9		- 4	8. C	3 -	•		• •	- 0	; =	• c		ı -	21.0	14.0	1	0.20	0.49
	Roctine to the state of the	• <	, e	, a	• •	- a	1) a	• •	• •			-	-	0.17	14.0	-	0.23	0 57
	alla seeth - ad	• •		• •	• •		0	• •	0	-	16.5	•	•	-	0.17	0.41	16.5	2.75	6.74
1 21.0 0 1 21.0 0 1 1 1.1 0 0 0 0 0 1 1 1 1.1 0 0 0 0 0 1 0 1 1 1.1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1	pile perch - juv	•	•	•	•	•	9	ø	0	-	12.5	0	0	-	0.17	0.41	12.5	2.00	5.10
	quillibrants cookilles	•	a	q	•	-	21.9	0	0	•	•	a (•	 .	0.17	14 i	21.9	3.65	40.0 0
	chiner peach - jur	•	•	- •	•	•	•	9 1	• •	• •	• •						+ - 0 -		
	Contract of the second s	••	9		• •	- 4	3	3 0	•	•	• •) c		110		0 7		6.08
14 318.0 16 003.5 31 440.3 23 145.5 20 556.5 50 260.2 140 28.00 15.90 2721.0 453.65					• •	• •	9 0	> d	, 0	• •	• •		• •		0.17		2.16	5.20	12.94
	NA	1	318.9	=	003.5	1	448.3	23	145.5	26	656.5	9	268.2	148	28.00	15.99	2721.9	453.65	296.26
							•												

.

Appendin Table 10. Total, average (catch per unit effect-CPUE) and standard deviation of abundance and biamase (g) for bottom lish species caught by beam trave (non the

N
ł
ē
ŝ
ŝ
Į.
ē 2
į
2
Ĕ
8
5
P.
÷
į.
š
20
¥.
Ē,
ł
ð ž
Ì
ľ
ļ
₹
Î
ę

													BA	DCAD ST	RATUM	RADCAD STHATUM WINTER 1987 BEAM TRAV	187 GEAD	TRAW
	ð		9	39	3	-	J	(ms	5	54.1	Sta 2	2						
860B	Abund	Biomess	Puq	Bloome	Abund	Biomase	Ahind	Blomase	Abund	Biomete	Abund	Blomass To	A brund A	S pundy and	Varial Day	Biomass Tot Abund Ave Abund Stand Dev Total Biom. Ave Biom Stand Dev	Ave Blom	Stand Dev
sadiah - ad	•	٩	0	•	0	0	-	380	-	186.5	0	•	N	0.33	0.52	676.5	96.08	162.17
plaintin midshipman	•	٥	a	•	¢	o	n	250	-	73.7	•	•	4	0.87	1.21	323.7	51.95	100.47
pypery poacher	•	•	0	0	•	0	•	0	-	18.9	٩	•	,	0.17	0.41	18.9	1.15	7.72
stender cole - ad	-	:	-	295.6	۰	•	-	36.7	•	•	-	66.5	•	1.00	1.10	410	68.33	114.34
siender sole - juv	•	0	•	•	ñ	2.2	•	9	•	•	-	0.54	e	0.50	0.84	2.74	0.46	0.68
Settend sole - ad	0	•	0	o	•	0	e	0	•	•	-	29.7	-	0.17	0.41	29.7	4,95	12.12
blacklin poscher	•	•	0	•	Ģ	9	•	0	۰	•	~	39.1	~	0.33	0.82	39.1	6.52	15.96
ephytead eculpin	¢	•	•	0	•	ò	•	۰	٩	•	-	41.1	-	0.17	0.41	41.1	6.85	16.78
TOTAL	-	=	e	295.8	CN	2.2	vð	676.7	n	279.1	9	176.94	20	3.33	1.86	1441.74	240.29	248,32

Appendix Table 10. corrd.

																					STRA	TUM:	N 1001	NNTER	1007	JEAN	TRAWL
SPECIES	F	NO.	T2 1	<u>8</u>	12 1	10	T2 10	ş	T2 1105	Ť.	1105		T5 110S		100N		7 1001		71008		0150	3	л Ц С			ð	
	ł	Fold	Ł	Ē	₹		ŧ	Moli	ā ę	< ج	6 0		₹	× Ş	قه و		ø P		8 ₹		Blog		- Віол		Blom	ł	Blom
elender sole - ad	•	200	0	a	n	137.2	•	•	0	•	~		=	.85			~	•	ã		25.		0	4	70.2	N	121.1
Dat - Adhan	-	40.9	2	390	•	•	-	41.4	1 22		61		•				~	0	4		•		136.		•	~	111.2
rathah - juv	•	•	•	•	-	•	-	10.6	0				•				•	•	2		•		25.6		23	-	38
plaintin midshipman	-	1.6	-	5.51	0	•	0	•	a	0		•	•	•	~ -	1.12	•	õ	•	•	•	•	32.1	•	•	N	2 136.3
elender sole - juv	0	49 14	¢	•	•	9	•	•	0				•				-	ņ	•		ē		1.5			•	0
English sols - ad	•	•	0	0	-	220	•	•	0				•				-	1	•		•		•			-	155.9
Pacific halo, ad	0	0	0	•	N	009	•	•	ð				•				e		•		•		24.7			0	•
quillback rockfish	0	0	0	0	•	0	•	•	0				•				~	•	2		•		ð			0	•
thackep poscher	0	•	0	•	•	0	0	•	0				•				~	0	•		•		o			0	0
Dover sole - ad	-	48.5	¢	a	•	0	0	0	•				•				~	õ	0		•		a			0	•
blackin poacher	0	•	0	0	٥	0	0	•	0				•				~	•	-		•		•			•	0
Ingrose state	٥	٩	0	•	٩	0	0	٥	0				0				~	~ •	0 0		440		Ō			0	o
ned brokkia	•	•	¢	0	9	0	0	Ģ	ين -				•					ō	0		•		0			0	•
The sole - ad	0	9	0	0	•	0	•	¢	0				•					0	9		-		٥			•	¢
slim aculpin	¢	9	•	•	•	•	0	0	0				•				~	ő	0		•		•			0	0
waterys potlock - juv	0	0	•	0	-		ø	0	•				•					。 。	9 6		•		•			0	0
TOTAL	12	295.4	n	406.3	•	1004.3	N	9 9	2 28	4	20	9.5	1				÷	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	8 767		488.		222.			4 0	562.5

Appendia Table 10. control

1

STRATUM 100M WHITEN 1007 DEAN TRAWL (CONTD.)

	8 PL	ł	100	Line and the second sec		10/0
elender sole - ad	25	1.67	1.96		54.14	67.46
action - ad -	=	0.79	0.70	1618.00	109.35	130.17
cattlets - juv	2	0.71	0.01	259,00	10.54	23.26
pininin midshipman	~	0.50	0.76	264.00	10.00	40.44
ationation action - Jury	~	0.50	0.94	13.10	0.94	1.03
Endish solo - ad	-	0.29	0.47	780.10	56.72	98,62
Padle hala - ad	•	0.21	0.50	624.70	44.82	159.98
quilback rechish	•	0.21	0.58	1059.50	75.64	194.07
blacking posicher	~	0.14	0.63	20.20	2.01	7.64
Cover note - ad	~	0.14	90.36	06.776	26.95	66.33
blackin poscher	-	0.07	0.27	1.40	0.10	0.37
Ibngnose skale	-	0.07	0.27	440.00	C1.43	117.59
red brotula	-	0.07	0.27	57.10	4.08	15.26
Mit Collo - Mi	-	0.07	0.27	19.00	1.36	5.08
stim scuipta	-	0.07	0.27	4.50	0.32	1.20
walleye polock - µv	-	0.07	0.27	01.0	0.56	2.16
TOTAL	77	6.50	3.62	6212.05	443.72	337.61